Visible to the public Biblio

Filters: Author is Sharma, K.  [Clear All Filters]
Manchanda, R., Sharma, K..  2020.  A Review of Reconstruction Algorithms in Compressive Sensing. 2020 International Conference on Advances in Computing, Communication Materials (ICACCM). :322–325.
Compressive Sensing (CS) is a promising technology for the acquisition of signals. The number of measurements is reduced by using CS which is needed to obtain the signals in some basis that are compressible or sparse. The compressible or sparse nature of the signals can be obtained by transforming the signals in some domain. Depending on the signals sparsity signals are sampled below the Nyquist sampling criteria by using CS. An optimization problem needs to be solved for the recovery of the original signal. Very few studies have been reported about the reconstruction of the signals. Therefore, in this paper, the reconstruction algorithms are elaborated systematically for sparse signal recovery in CS. The discussion of various reconstruction algorithms in made in this paper will help the readers in order to understand these algorithms efficiently.
Sharma, K., Bhadauria, S..  2020.  Detection and Prevention of Black Hole Attack in SUPERMAN. 2020 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1–6.
MANETs are wireless networks, providing properties such as self-configuration, mobility, and flexibility to the network, which make them a popular and widely used technique. As the usage and popularity of the networks increases, security becomes the most important factor to be concerned. For the sake of security, several protocols and methodologies have been developed for the networks. Along with the increase in security mechanisms, the number of attacks and attackers also increases and hence the threat to the network and secure communication within it increases as well. Some of the attacks have been resolved by the proposed methodologies but some are still a severe threat to the framework, one such attack is Black Hole Attack. The proposed work integrates the SUPERMAN (Security Using Pre-Existing Routing for Mobile Ad-hoc Networks) framework with appropriate methodology to detect and prevent the network from the Black Hole Attack. The mechanism is based on the AODV (Ad-hoc On-demand Distance Vector) routing protocol. In the methodology, the source node uses two network routes, from the source to the destination, one for sending the data packet and another for observing the intermediate nodes of the initial route. If any node is found to be a Black Hole node, then the route is dropped and the node is added to the Black Hole list and a new route to send the data packet to the destination is discovered.