Visible to the public Biblio

Filters: Author is Vaibhavi Deshmukh  [Clear All Filters]
Vaibhavi Deshmukh, Swarnima Deshmukh, Shivani Deosatwar, Reva Sarda, Lalit Kulkarni.  2020.  Versatile CAPTCHA Generation Using Machine Learning and Image Processing.

Due to the significant increase in the size of the internet and the number of users on this platform there has been a tremendous increase in load on various websites and web-based applications. This load is from the user end which causes unforeseen conditions which leads to unacceptable consequences such as crash or a data loss scenario at the webserver end. Therefore, there is a need to reduce the load on the server as well as the chances of network attacks that increase with the increased user base. The undue consequences such as data loss and server crash are caused due to two main reasons: the first one being an overload of users and the second due to an increased number of automatic programs or robots. A technique can be utilized to overcome this scenario by introducing a delay in the operation speed on the user end through the use of a CAPTCHA mechanism. Most of the classical approaches use a single method for the generation of the CAPTCHA, to overcome this proposed model uses the versatile image CAPTCHA generation mechanism. We have introduced a system that utilizes manualbased, face detection-based, colour based and random object insertion technique to generate 4 different random types of CAPTCHA. The proposed methodology implements a region of interest and convolutional neural networks to achieve the generation of the CAPTCHA effectively.