Visible to the public Biblio

Filters: Author is Wang, Rui  [Clear All Filters]
2020
Liu, Donglan, Wang, Rui, Zhang, Hao, Ma, Lei, Liu, Xin, Huang, Hua, Chang, Yingxian.  2020.  Research on Data Security Protection Method Based on Big Data Technology. 2020 12th International Conference on Communication Software and Networks (ICCSN). :79—83.
The construction of power Internet of things is an important development direction of power grid enterprises in the future. Big data not only brings economic and social benefits to the power system industry, but also brings many information security problems. Therefore, in the case of accelerating the construction of ubiquitous electric Internet of things, it is urgent to standardize the data security protection in the ubiquitous electric Internet of things environment. By analyzing the characteristics of big data in power system, this paper discusses the security risks faced by big data in power system. Finally, we propose some methods of data security protection based on the defects of big data security in current power system. By building a data security intelligent management and control platform, it can automatically discover and identify the types and levels of data assets, and build a classification and grading information base of dynamic data assets. And through the detection and identification of data labels and data content characteristics, tracking the use of data flow process. So as to realize the monitoring of data security state. By protecting sensitive data against leakage based on the whole life cycle of data, the big data security of power grid informatization can be effectively guaranteed and the safety immunity of power information system can be improved.
2021
Hu, Guangjun, Li, Haiwei, Li, Kun, Wang, Rui.  2021.  A Network Asset Detection Scheme Based on Website Icon Intelligent Identification. 2021 Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS). :255–257.
With the rapid development of the Internet and communication technologies, efficient management of cyberspace, safe monitoring and protection of various network assets can effectively improve the overall level of network security protection. Accurate, effective and comprehensive network asset detection is the prerequisite for effective network asset management, and it is also the basis for security monitoring and analysis. This paper proposed an artificial intelligence algorithm based scheme which accurately identify the website icon and help to determine the ownership of network assets. Through experiments based on data set collected from real network, the result demonstrate that the proposed scheme has higher accuracy and lower false alarm rate, and can effectively reduce the training cost.
Li, Kun, Wang, Rui, Li, Haiwei, Hao, Yan.  2021.  A Network Attack Blocking Scheme Based on Threat Intelligence. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). :976–980.
In the current network security situation, the types of network threats are complex and changeable. With the development of the Internet and the application of information technology, the general trend is opener. Important data and important business applications will face more serious security threats. However, with the development of cloud computing technology, the trend of large-scale deployment of important business applications in cloud centers has greatly increased. The development and use of software-defined networks in cloud data centers have greatly reduced the effect of traditional network security boundary protection. How to find an effective way to protect important applications in open multi-step large-scale cloud data centers is a problem we need to solve. Threat intelligence has become an important means to solve complex network attacks, realize real-time threat early warning and attack tracking because of its ability to analyze the threat intelligence data of various network attacks. Based on the research of threat intelligence, machine learning, cloud central network, SDN and other technologies, this paper proposes an active defense method of network security based on threat intelligence for super-large cloud data centers.