Visible to the public Biblio

Filters: Author is Zheng, Y.  [Clear All Filters]
Zheng, Y., Cao, Y., Chang, C..  2020.  A PUF-Based Data-Device Hash for Tampered Image Detection and Source Camera Identification. IEEE Transactions on Information Forensics and Security. 15:620—634.
With the increasing prevalent of digital devices and their abuse for digital content creation, forgeries of digital images and video footage are more rampant than ever. Digital forensics is challenged into seeking advanced technologies for forgery content detection and acquisition device identification. Unfortunately, existing solutions that address image tampering problems fail to identify the device that produces the images or footage while techniques that can identify the camera is incapable of locating the tampered content of its captured images. In this paper, a new perceptual data-device hash is proposed to locate maliciously tampered image regions and identify the source camera of the received image data as a non-repudiable attestation in digital forensics. The presented image may have been either tampered or gone through benign content preserving geometric transforms or image processing operations. The proposed image hash is generated by projecting the invariant image features into a physical unclonable function (PUF)-defined Bernoulli random space. The tamper-resistant random PUF response is unique for each camera and can only be generated upon triggered by a challenge, which is provided by the image acquisition timestamp. The proposed hash is evaluated on the modified CASIA database and CMOS image sensor-based PUF simulated using 180 nm TSMC technology. It achieves a high tamper detection rate of 95.42% with the regions of tampered content successfully located, a good authentication performance of above 98.5% against standard content-preserving manipulations, and 96.25% and 90.42%, respectively, for the more challenging geometric transformations of rotation (0 360°) and scaling (scale factor in each dimension: 0.5). It is demonstrated to be able to identify the source camera with 100% accuracy and is secure against attacks on PUF.
Romano, A., Zheng, Y., Wang, W..  2020.  MinerRay: Semantics-Aware Analysis for Ever-Evolving Cryptojacking Detection. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1129—1140.
Recent advances in web technology have made in-browser crypto-mining a viable funding model. However, these services have been abused to launch large-scale cryptojacking attacks to secretly mine cryptocurrency in browsers. To detect them, various signature-based or runtime feature-based methods have been proposed. However, they can be imprecise or easily circumvented. To this end, we propose MinerRay, a generic scheme to detect malicious in-browser cryptominers. Instead of leveraging unreliable external patterns, MinerRay infers the essence of cryptomining behaviors that differentiate mining from common browser activities in both WebAssembly and JavaScript contexts. Additionally, to detect stealthy mining activities without user consents, MinerRay checks if the miner can only be instantiated from user actions. MinerRay was evaluated on over 1 million websites. It detected cryptominers on 901 websites, where 885 secretly start mining without user consent. Besides, we compared MinerRay with five state-of-the-art signature-based or behavior-based cryptominer detectors (MineSweeper, CMTracker, Outguard, No Coin, and minerBlock). We observed that emerging miners with new signatures or new services were detected by MinerRay but missed by others. The results show that our proposed technique is effective and robust in detecting evolving cryptominers, yielding more true positives, and fewer errors.
Hou, N., Zheng, Y..  2020.  CloakLoRa: A Covert Channel over LoRa PHY. 2020 IEEE 28th International Conference on Network Protocols (ICNP). :1—11.
This paper describes our design and implementation of a covert channel over LoRa physical layer (PHY). LoRa adopts a unique modulation scheme (chirp spread spectrum (CSS)) to enable long range communication at low-power consumption. CSS uses the initial frequencies of LoRa chirps to differentiate LoRa symbols, while simply ignoring other RF parameters (e.g., amplitude and phase). Our study reveals that the LoRa physical layer leaves sufficient room to build a covert channel by embedding covert information with a modulation scheme orthogonal to CSS. To demonstrate the feasibility of building a covert channel, we implement CloakLoRa. CloakLoRa embeds covert information into a regular LoRa packet by modulating the amplitudes of LoRa chirps while keeping the frequency intact. As amplitude modulation is orthogonal to CSS, a regular LoRa node receives the LoRa packet as if no secret information is embedded into the packet. Such an embedding method is transparent to all security mechanisms at upper layers in current LoRaWAN. As such, an attacker can create an amplitude modulated covert channel over LoRa without being detected by current LoRaWAN security mechanism. We conduct comprehensive evaluations with COTS LoRa nodes and receive-only software defined radios and experiment results show that CloakLoRa can send covert information over 250m.
Zheng, Y., Shi, Y., Guo, K., Li, W., Zhu, L..  2017.  Enhanced word embedding with multiple prototypes. 2017 4th International Conference on Industrial Economics System and Industrial Security Engineering (IEIS). :1–5.

Word representation is one of the basic word repressentation methods in natural language processing, which mapped a word into a dense real-valued vector space based on a hypothesis: words with similar context have similar meanings. Models like NNLM, C&W, CBOW, Skip-gram have been designed for word embeddings learning, and get widely used in many NLP tasks. However, these models assume that one word had only one semantics meaning which is contrary to the real language rules. In this paper we pro-pose a new word unit with multiple meanings and an algorithm to distinguish them by it's context. This new unit can be embedded in most language models and get series of efficient representations by learning variable embeddings. We evaluate a new model MCBOW that integrate CBOW with our word unit on word similarity evaluation task and some downstream experiments, the result indicated our new model can learn different meanings of a word and get a better result on some other tasks.

Zheng, Y., Zheng, S..  2015.  Cyber Security Risk Assessment for Industrial Automation Platform. 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP). :341–344.

Due to the fact that the cyber security risks exist in industrial control system, risk assessment on Industrial Automation Platform (IAP) is discussed in this paper. The cyber security assessment model for IAP is built based on relevant standards at abroad. Fuzzy analytic hierarchy process and fuzzy comprehensive evaluation method based on entropy theory are utilized to evaluate the communication links' risk of IAP software. As a result, the risk weight of communication links which have impacts on platform and the risk level of this platform are given for further study on protective strategy. The assessment result shows that the methods used can evaluate this platform efficiently and practically.