Visible to the public Biblio

Filters: Author is Sarwat, A. I.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
Rahman, S., Aburub, H., Mekonnen, Y., Sarwat, A. I..  2018.  A Study of EV BMS Cyber Security Based on Neural Network SOC Prediction. 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T D). :1—5.

Recent changes to greenhouse gas emission policies are catalyzing the electric vehicle (EV) market making it readily accessible to consumers. While there are challenges that arise with dense deployment of EVs, one of the major future concerns is cyber security threat. In this paper, cyber security threats in the form of tampering with EV battery's State of Charge (SOC) was explored. A Back Propagation (BP) Neural Network (NN) was trained and tested based on experimental data to estimate SOC of battery under normal operation and cyber-attack scenarios. NeuralWare software was used to run scenarios. Different statistic metrics of the predicted values were compared against the actual values of the specific battery tested to measure the stability and accuracy of the proposed BP network under different operating conditions. The results showed that BP NN was able to capture and detect the false entries due to a cyber-attack on its network.

S
Sarochar, J., Acharya, I., Riggs, H., Sundararajan, A., Wei, L., Olowu, T., Sarwat, A. I..  2019.  Synthesizing Energy Consumption Data Using a Mixture Density Network Integrated with Long Short Term Memory. 2019 IEEE Green Technologies Conference(GreenTech). :1—4.
Smart cities comprise multiple critical infrastructures, two of which are the power grid and communication networks, backed by centralized data analytics and storage. To effectively model the interdependencies between these infrastructures and enable a greater understanding of how communities respond to and impact them, large amounts of varied, real-world data on residential and commercial consumer energy consumption, load patterns, and associated human behavioral impacts are required. The dissemination of such data to the research communities is, however, largely restricted because of security and privacy concerns. This paper creates an opportunity for the development and dissemination of synthetic energy consumption data which is inherently anonymous but holds similarities to the properties of real data. This paper explores a framework using mixture density network (MDN) model integrated with a multi-layered Long Short-Term Memory (LSTM) network which shows promise in this area of research. The model is trained using an initial sample recorded from residential smart meters in the state of Florida, and is used to generate fully synthetic energy consumption data. The synthesized data will be made publicly available for interested users.
W
Wei, L., Moghadasi, A. H., Sundararajan, A., Sarwat, A. I..  2015.  Defending mechanisms for protecting power systems against intelligent attacks. 2015 10th System of Systems Engineering Conference (SoSE). :12–17.

The power system forms the backbone of a modern society, and its security is of paramount importance to nation's economy. However, the power system is vulnerable to intelligent attacks by attackers who have enough knowledge of how the power system is operated, monitored and controlled. This paper proposes a game theoretic approach to explore and evaluate strategies for the defender to protect the power systems against such intelligent attacks. First, a risk assessment is presented to quantify the physical impacts inflicted by attacks. Based upon the results of the risk assessment, this paper represents the interactions between the attacker and the defender by extending the current zero-sum game model to more generalized game models for diverse assumptions concerning the attacker's motivation. The attacker and defender's equilibrium strategies are attained by solving these game models. In addition, a numerical illustration is demonstrated to warrant the theoretical outcomes.