Visible to the public Biblio

Filters: Author is Mazurek, Michelle L.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Redmiles, Elissa M., Zhu, Ziyun, Kross, Sean, Kuchhal, Dhruv, Dumitras, Tudor, Mazurek, Michelle L..  2018.  Asking for a Friend: Evaluating Response Biases in Security User Studies. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1238-1255.

The security field relies on user studies, often including survey questions, to query end users' general security behavior and experiences, or hypothetical responses to new messages or tools. Self-report data has many benefits – ease of collection, control, and depth of understanding – but also many well-known biases stemming from people's difficulty remembering prior events or predicting how they might behave, as well as their tendency to shape their answers to a perceived audience. Prior work in fields like public health has focused on measuring these biases and developing effective mitigations; however, there is limited evidence as to whether and how these biases and mitigations apply specifically in a computer-security context. In this work, we systematically compare real-world measurement data to survey results, focusing on an exemplar, well-studied security behavior: software updating. We align field measurements about specific software updates (n=517,932) with survey results in which participants respond to the update messages that were used when those versions were released (n=2,092). This allows us to examine differences in self-reported and observed update speeds, as well as examining self-reported responses to particular message features that may correlate with these results. The results indicate that for the most part, self-reported data varies consistently and systematically with measured data. However, this systematic relationship breaks down when survey respondents are required to notice and act on minor details of experimental manipulations. Our results suggest that many insights from self-report security data can, when used with care, translate to real-world environments; however, insights about specific variations in message texts or other details may be more difficult to assess with surveys.

D
Redmiles, Elissa M., Mazurek, Michelle L., Dickerson, John P..  2018.  Dancing Pigs or Externalities?: Measuring the Rationality of Security Decisions Proceedings of the 2018 ACM Conference on Economics and Computation. :215-232.

Accurately modeling human decision-making in security is critical to thinking about when, why, and how to recommend that users adopt certain secure behaviors. In this work, we conduct behavioral economics experiments to model the rationality of end-user security decision-making in a realistic online experimental system simulating a bank account. We ask participants to make a financially impactful security choice, in the face of transparent risks of account compromise and benefits offered by an optional security behavior (two-factor authentication). We measure the cost and utility of adopting the security behavior via measurements of time spent executing the behavior and estimates of the participant's wage. We find that more than 50% of our participants made rational (e.g., utility optimal) decisions, and we find that participants are more likely to behave rationally in the face of higher risk. Additionally, we find that users' decisions can be modeled well as a function of past behavior (anchoring effects), knowledge of costs, and to a lesser extent, users' awareness of risks and context (R2=0.61). We also find evidence of endowment effects, as seen in other areas of economic and psychological decision-science literature, in our digital-security setting. Finally, using our data, we show theoretically that a "one-size-fits-all" emphasis on security can lead to market losses, but that adoption by a subset of users with higher risks or lower costs can lead to market gains.

M
Mazurek, Michelle L., Komanduri, Saranga, Vidas, Timothy, Bauer, Lujo, Christin, Nicolas, Cranor, Lorrie Faith, Kelley, Patrick Gage, Shay, Richard, Ur, Blase.  2013.  Measuring Password Guessability for an Entire University. Proceedings of the 2013 ACM SIGSAC Conference on Computer &\#38; Communications Security. :173–186.
Despite considerable research on passwords, empirical studies of password strength have been limited by lack of access to plaintext passwords, small data sets, and password sets specifically collected for a research study or from low-value accounts. Properties of passwords used for high-value accounts thus remain poorly understood. We fill this gap by studying the single-sign-on passwords used by over 25,000 faculty, staff, and students at a research university with a complex password policy. Key aspects of our contributions rest on our (indirect) access to plaintext passwords. We describe our data collection methodology, particularly the many precautions we took to minimize risks to users. We then analyze how guessable the collected passwords would be during an offline attack by subjecting them to a state-of-the-art password cracking algorithm. We discover significant correlations between a number of demographic and behavioral factors and password strength. For example, we find that users associated with the computer science school make passwords more than 1.5 times as strong as those of users associated with the business school. while users associated with computer science make strong ones. In addition, we find that stronger passwords are correlated with a higher rate of errors entering them. We also compare the guessability and other characteristics of the passwords we analyzed to sets previously collected in controlled experiments or leaked from low-value accounts. We find more consistent similarities between the university passwords and passwords collected for research studies under similar composition policies than we do between the university passwords and subsets of passwords leaked from low-value accounts that happen to comply with the same policies.