Visible to the public Biblio

Filters: Author is Ghosh, Uttam  [Clear All Filters]
2020-09-28
Madhan, E.S., Ghosh, Uttam, Tosh, Deepak K., Mandal, K., Murali, E., Ghosh, Soumalya.  2019.  An Improved Communications in Cyber Physical System Architecture, Protocols and Applications. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–6.
In recent trends, Cyber-Physical Systems (CPS) and Internet of Things interpret an evolution of computerized integration connectivity. The specific research challenges in CPS as security, privacy, data analytics, participate sensing, smart decision making. In addition, The challenges in Wireless Sensor Network (WSN) includes secure architecture, energy efficient protocols and quality of services. In this paper, we present an architectures of CPS and its protocols and applications. We propose software related mobile sensing paradigm namely Mobile Sensor Information Agent (MSIA). It works as plug-in based for CPS middleware and scalable applications in mobile devices. The working principle MSIA is acts intermediary device and gathers data from a various external sensors and its upload to cloud on demand. CPS needs tight integration between cyber world and man-made physical world to achieve stability, security, reliability, robustness, and efficiency in the system. Emerging software-defined networking (SDN) can be integrated as the communication infrastructure with CPS infrastructure to accomplish such system. Thus we propose a possible SDN-based CPS framework to improve the performance of the system.
2017-03-29
Ghosh, Uttam, Dong, Xinshu, Tan, Rui, Kalbarczyk, Zbigniew, Yau, David K.Y., Iyer, Ravishankar K..  2016.  A Simulation Study on Smart Grid Resilience Under Software-Defined Networking Controller Failures. Proceedings of the 2Nd ACM International Workshop on Cyber-Physical System Security. :52–58.

Riding on the success of SDN for enterprise and data center networks, recently researchers have shown much interest in applying SDN for critical infrastructures. A key concern, however, is the vulnerability of the SDN controller as a single point of failure. In this paper, we develop a cyber-physical simulation platform that interconnects Mininet (an SDN emulator), hardware SDN switches, and PowerWorld (a high-fidelity, industry-strength power grid simulator). We report initial experiments on how a number of representative controller faults may impact the delay of smart grid communications. We further evaluate how this delay may affect the performance of the underlying physical system, namely automatic gain control (AGC) as a fundamental closed-loop control that regulates the grid frequency to a critical nominal value. Our results show that when the fault-induced delay reaches seconds (e.g., more than four seconds in some of our experiments), degradation of the AGC becomes evident. Particularly, the AGC is most vulnerable when it is in a transient following say step changes in loading, because the significant state fluctuations will exacerbate the effects of using a stale system state in the control.