Visible to the public Biblio

Filters: Author is Ristenpart, T.  [Clear All Filters]
2014-09-26
Dyer, K.P., Coull, S.E., Ristenpart, T., Shrimpton, T..  2012.  Peek-a-Boo, I Still See You: Why Efficient Traffic Analysis Countermeasures Fail. Security and Privacy (SP), 2012 IEEE Symposium on. :332-346.

We consider the setting of HTTP traffic over encrypted tunnels, as used to conceal the identity of websites visited by a user. It is well known that traffic analysis (TA) attacks can accurately identify the website a user visits despite the use of encryption, and previous work has looked at specific attack/countermeasure pairings. We provide the first comprehensive analysis of general-purpose TA countermeasures. We show that nine known countermeasures are vulnerable to simple attacks that exploit coarse features of traffic (e.g., total time and bandwidth). The considered countermeasures include ones like those standardized by TLS, SSH, and IPsec, and even more complex ones like the traffic morphing scheme of Wright et al. As just one of our results, we show that despite the use of traffic morphing, one can use only total upstream and downstream bandwidth to identify – with 98% accuracy - which of two websites was visited. One implication of what we find is that, in the context of website identification, it is unlikely that bandwidth-efficient, general-purpose TA countermeasures can ever provide the type of security targeted in prior work.

2015-05-05
Everspaugh, A., Yan Zhai, Jellinek, R., Ristenpart, T., Swift, M..  2014.  Not-So-Random Numbers in Virtualized Linux and the Whirlwind RNG. Security and Privacy (SP), 2014 IEEE Symposium on. :559-574.

Virtualized environments are widely thought to cause problems for software-based random number generators (RNGs), due to use of virtual machine (VM) snapshots as well as fewer and believed-to-be lower quality entropy sources. Despite this, we are unaware of any published analysis of the security of critical RNGs when running in VMs. We fill this gap, using measurements of Linux's RNG systems (without the aid of hardware RNGs, the most common use case today) on Xen, VMware, and Amazon EC2. Despite CPU cycle counters providing a significant source of entropy, various deficiencies in the design of the Linux RNG makes its first output vulnerable during VM boots and, more critically, makes it suffer from catastrophic reset vulnerabilities. We show cases in which the RNG will output the exact same sequence of bits each time it is resumed from the same snapshot. This can compromise, for example, cryptographic secrets generated after resumption. We explore legacy-compatible countermeasures, as well as a clean-slate solution. The latter is a new RNG called Whirlwind that provides a simpler, more-secure solution for providing system randomness.