Visible to the public Biblio

Filters: Author is Rajarajan, M.  [Clear All Filters]
2017
Acarali, D., Rajarajan, M., Komninos, N., Herwono, I..  2017.  Event graphs for the observation of botnet traffic. 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :628–634.

Botnets are a growing threat to the security of data and services on a global level. They exploit vulnerabilities in networks and host machines to harvest sensitive information, or make use of network resources such as memory or bandwidth in cyber-crime campaigns. Bot programs by nature are largely automated and systematic, and this is often used to detect them. In this paper, we extend upon existing work in this area by proposing a network event correlation method to produce graphs of flows generated by botnets, outlining the implementation and functionality of this approach. We also show how this method can be combined with statistical flow-based analysis to provide a descriptive chain of events, and test on public datasets with an overall success rate of 94.1%.

2015
Olabelurin, A., Veluru, S., Healing, A., Rajarajan, M..  2015.  Entropy clustering approach for improving forecasting in DDoS attacks. 2015 IEEE 12th International Conference on Networking, Sensing and Control. :315–320.

Volume anomaly such as distributed denial-of-service (DDoS) has been around for ages but with advancement in technologies, they have become stronger, shorter and weapon of choice for attackers. Digital forensic analysis of intrusions using alerts generated by existing intrusion detection system (IDS) faces major challenges, especially for IDS deployed in large networks. In this paper, the concept of automatically sifting through a huge volume of alerts to distinguish the different stages of a DDoS attack is developed. The proposed novel framework is purpose-built to analyze multiple logs from the network for proactive forecast and timely detection of DDoS attacks, through a combined approach of Shannon-entropy concept and clustering algorithm of relevant feature variables. Experimental studies on a cyber-range simulation dataset from the project industrial partners show that the technique is able to distinguish precursor alerts for DDoS attacks, as well as the attack itself with a very low false positive rate (FPR) of 22.5%. Application of this technique greatly assists security experts in network analysis to combat DDoS attacks.