Visible to the public Biblio

Filters: Author is Xu, W.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Z
Zou, Z., Wang, D., Yang, H., Hou, Y., Yang, Y., Xu, W..  2018.  Research on Risk Assessment Technology of Industrial Control System Based on Attack Graph. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :2420-2423.

In order to evaluate the network security risks and implement effective defenses in industrial control system, a risk assessment method for industrial control systems based on attack graphs is proposed. Use the concept of network security elements to translate network attacks into network state migration problems and build an industrial control network attack graph model. In view of the current subjective evaluation of expert experience, the atomic attack probability assignment method and the CVSS evaluation system were introduced to evaluate the security status of the industrial control system. Finally, taking the centralized control system of the thermal power plant as the experimental background, the case analysis is performed. The experimental results show that the method can comprehensively analyze the potential safety hazards in the industrial control system and provide basis for the safety management personnel to take effective defense measures.

Zhang, T., Wang, Y., Liang, X., Zhuang, Z., Xu, W..  2017.  Cyber Attacks in Cyber-Physical Power Systems: A Case Study with GPRS-Based SCADA Systems. 2017 29th Chinese Control And Decision Conference (CCDC). :6847–6852.

With the integration of computing, communication, and physical processes, the modern power grid is becoming a large and complex cyber physical power system (CPPS). This trend is intended to modernize and improve the efficiency of the power grid, yet it makes the CPPS vulnerable to potential cascading failures caused by cyber-attacks, e.g., the attacks that are originated by the cyber network of CPPS. To prevent these risks, it is essential to analyze how cyber-attacks can be conducted against the CPPS and how they can affect the power systems. In light of that General Packet Radio Service (GPRS) has been widely used in CPPS, this paper provides a case study by examining possible cyber-attacks against the cyber-physical power systems with GPRS-based SCADA system. We analyze the vulnerabilities of GPRS-based SCADA systems and focus on DoS attacks and message spoofing attacks. Furthermore, we show the consequence of these attacks against power systems by a simulation using the IEEE 9-node system, and the results show the validity of cascading failures propagated through the systems under our proposed attacks.

Zhang, J., Ji, X., Xu, W., Chen, Y.-C., Tang, Y., Qu, G..  2020.  MagView: A Distributed Magnetic Covert Channel via Video Encoding and Decoding. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :357—366.

Air-gapped networks achieve security by using the physical isolation to keep the computers and network from the Internet. However, magnetic covert channels based on CPU utilization have been proposed to help secret data to escape the Faraday-cage and the air-gap. Despite the success of such cover channels, they suffer from the high risk of being detected by the transmitter computer and the challenge of installing malware into such a computer. In this paper, we propose MagView, a distributed magnetic cover channel, where sensitive information is embedded in other data such as video and can be transmitted over the air-gapped internal network. When any computer uses the data such as playing the video, the sensitive information will leak through the magnetic covert channel. The "separation" of information embedding and leaking, combined with the fact that the covert channel can be created on any computer, overcomes these limitations. We demonstrate that CPU utilization for video decoding can be effectively controlled by changing the video frame type and reducing the quantization parameter without video quality degradation. We prototype MagView and achieve up to 8.9 bps throughput with BER as low as 0.0057. Experiments under different environment are conducted to show the robustness of MagView. Limitations and possible countermeasures are also discussed.

X
Xu, W., Cheung, S. c S., Soares, N..  2015.  Affect-preserving privacy protection of video. 2015 IEEE International Conference on Image Processing (ICIP). :158–162.

The prevalence of wireless networks and the convenience of mobile cameras enable many new video applications other than security and entertainment. From behavioral diagnosis to wellness monitoring, cameras are increasing used for observations in various educational and medical settings. Videos collected for such applications are considered protected health information under privacy laws in many countries. At the same time, there is an increasing need to share such video data across a wide spectrum of stakeholders including professionals, therapists and families facing similar challenges. Visual privacy protection techniques, such as blurring or object removal, can be used to mitigate privacy concern, but they also obliterate important visual cues of affect and social behaviors that are crucial for the target applications. In this paper, we propose a method of manipulating facial expression and body shape to conceal the identity of individuals while preserving the underlying affect states. The experiment results demonstrate the effectiveness of our method.

Xu, W., Yan, Z., Tian, Y., Cui, Y., Lin, J..  2017.  Detection with compressive measurements corrupted by sparse errors. 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). :1–5.

Compressed sensing can represent the sparse signal with a small number of measurements compared to Nyquist-rate samples. Considering the high-complexity of reconstruction algorithms in CS, recently compressive detection is proposed, which performs detection directly in compressive domain without reconstruction. Different from existing work that generally considers the measurements corrupted by dense noises, this paper studies the compressive detection problem when the measurements are corrupted by both dense noises and sparse errors. The sparse errors exist in many practical systems, such as the ones affected by impulse noise or narrowband interference. We derive the theoretical performance of compressive detection when the sparse error is either deterministic or random. The theoretical results are further verified by simulations.

Xu, W., Peng, Y..  2018.  SharaBLE: A Software Framework for Shared Usage of BLE Devices over the Internet. 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). :381—385.

With the development of Internet of Things, numerous IoT devices have been brought into our daily lives. Bluetooth Low Energy (BLE), due to the low energy consumption and generic service stack, has become one of the most popular wireless communication technologies for IoT. However, because of the short communication range and exclusive connection pattern, a BLE-equipped device can only be used by a single user near the device. To fully explore the benefits of BLE and make BLE-equipped devices truly accessible over the Internet as IoT devices, in this paper, we propose a cloud-based software framework that can enable multiple users to interact with various BLE IoT devices over the Internet. This framework includes an agent program, a suite of services hosting in cloud, and a set of RESTful APIs exposed to Internet users. Given the availability of this framework, the access to BLE devices can be extended from local to the Internet scale without any software or hardware changes to BLE devices, and more importantly, shared usage of remote BLE devices over the Internet is also made available.

L
Li, Y., Ji, X., Li, C., Xu, X., Yan, W., Yan, X., Chen, Y., Xu, W..  2020.  Cross-domain Anomaly Detection for Power Industrial Control System. 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC). :383—386.

In recent years, artificial intelligence has been widely used in the field of network security, which has significantly improved the effect of network security analysis and detection. However, because the power industrial control system is faced with the problem of shortage of attack data, the direct deployment of the network intrusion detection system based on artificial intelligence is faced with the problems of lack of data, low precision, and high false alarm rate. To solve this problem, we propose an anomaly traffic detection method based on cross-domain knowledge transferring. By using the TrAdaBoost algorithm, we achieve a lower error rate than using LSTM alone.