Visible to the public Biblio

Filters: Author is Sun, Z.  [Clear All Filters]
Xu, M., Huber, M., Sun, Z., England, P., Peinado, M., Lee, S., Marochko, A., Mattoon, D., Spiger, R., Thom, S..  2019.  Dominance as a New Trusted Computing Primitive for the Internet of Things. 2019 IEEE Symposium on Security and Privacy (SP). :1415–1430.
The Internet of Things (IoT) is rapidly emerging as one of the dominant computing paradigms of this decade. Applications range from in-home entertainment to large-scale industrial deployments such as controlling assembly lines and monitoring traffic. While IoT devices are in many respects similar to traditional computers, user expectations and deployment scenarios as well as cost and hardware constraints are sufficiently different to create new security challenges as well as new opportunities. This is especially true for large-scale IoT deployments in which a central entity deploys and controls a large number of IoT devices with minimal human interaction. Like traditional computers, IoT devices are subject to attack and compromise. Large IoT deployments consisting of many nearly identical devices are especially attractive targets. At the same time, recovery from root compromise by conventional means becomes costly and slow, even more so if the devices are dispersed over a large geographical area. In the worst case, technicians have to travel to all devices and manually recover them. Data center solutions such as the Intelligent Platform Management Interface (IPMI) which rely on separate service processors and network connections are not only not supported by existing IoT hardware, but are unlikely to be in the foreseeable future due to the cost constraints of mainstream IoT devices. This paper presents CIDER, a system that can recover IoT devices within a short amount of time, even if attackers have taken root control of every device in a large deployment. The recovery requires minimal manual intervention. After the administrator has identified the compromise and produced an updated firmware image, he/she can instruct CIDER to force the devices to reset and to install the patched firmware on the devices. We demonstrate the universality and practicality of CIDER by implementing it on three popular IoT platforms (HummingBoard Edge, Raspberry Pi Compute Module 3 and Nucleo-L476RG) spanning the range from high to low end. Our evaluation shows that the performance overhead of CIDER is generally negligible.
Sun, Z., Du, P., Nakao, A., Zhong, L., Onishi, R..  2019.  Building Dynamic Mapping with CUPS for Next Generation Automotive Edge Computing. 2019 IEEE 8th International Conference on Cloud Networking (CloudNet). :1—6.

With the development of IoT and 5G networks, the demand for the next-generation intelligent transportation system has been growing at a rapid pace. Dynamic mapping has been considered one of the key technologies to reduce traffic accidents and congestion in the intelligent transportation system. However, as the number of vehicles keeps growing, a huge volume of mapping traffic may overload the central cloud, leading to serious performance degradation. In this paper, we propose and prototype a CUPS (control and user plane separation)-based edge computing architecture for the dynamic mapping and quantify its benefits by prototyping. There are a couple of merits of our proposal: (i) we can mitigate the overhead of the networks and central cloud because we only need to abstract and send global dynamic mapping information from the edge servers to the central cloud; (ii) we can reduce the response latency since the dynamic mapping traffic can be isolated from other data traffic by being generated and distributed from a local edge server that is deployed closer to the vehicles than the central server in cloud. The capabilities of our system have been quantified. The experimental results have shown our system achieves throughput improvement by more than four times, and response latency reduction by 67.8% compared to the conventional central cloud-based approach. Although these results are still obtained from the preliminary evaluations using our prototype system, we believe that our proposed architecture gives insight into how we utilize CUPS and edge computing to enable efficient dynamic mapping applications.

Liu, Y., Li, L., Gao, Q., Cao, J., Wang, R., Sun, Z..  2019.  Analytical Model of Torque-Prediction for a Novel Hybrid Rotor Permanent Magnet Machines. IEEE Access. 7:109528–109538.

This paper presents an analytical method for predicting the electromagnetic performance in permanent magnet (PM) machine with the spoke-type rotor (STR) and a proposed hybrid rotor structure (HRS), respectively. The key of this method is to combine magnetic field analysis model (MFAM) with the magnetic equivalent circuit model. The influence of the irregular PM shape is considered by the segmentation calculation. To obtain the boundary condition in the MFAM, respectively, two equivalent methods on the rotor side are proposed. In the STR, the average flux density of the rotor core outer-surface is calculated to solve the Laplace's equation with considering for the rotor core outer-surface eccentric. In the HRS, based on the Thevenin's theorem, the equivalent parameters of PM remanence BreB and thickness hpme are obtained as a given condition, which can be utilized to compute the air-gap flux density by conventional classic magnetic field analysis model of surface-mounted PMs with air-gap region. Finally, the proposed analytical models are verified by the finite element analysis (FEA) with comparisons of the air-gap flux density, flux linkage, back-EMF and electromagnetic torque, respectively. Furthermore, the performance that the machine with the proposed hybrid structure rotor can improve the torque density as explained.

Xu, J., Ying, C., Tan, S., Sun, Z., Wang, P., Sun, Z..  2018.  An Attribute-Based Searchable Encryption Scheme Supporting Trapdoor Updating. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :7-14.
In the cloud computing environment, a growing number of users share their own data files through cloud storage. However, there will be some security and privacy problems due to the reason that the cloud is not completely trusted, so it needs to be resolved by access control. Attribute-based encryption (ABE) and searchable encryption (SE) can solve fine-grained access control. At present, researchers combine the two to propose an attribute-based searchable encryption scheme and achieved remarkable results. Nevertheless, most of existing attribute-based searchable encryption schemes cannot resist online/offline keyword guessing attack. To solve the problem, we present an attribute-based (CP-ABE) searchable encryption scheme that supports trapdoor updating (CSES-TU). In this scheme, the data owner can formulate an access strategy for the encrypted data. Only the attributes of the data user are matched with the strategy can the effective trapdoor be generated and the ciphertext be searched, and that this scheme will update trapdoors at the same time. Even if the keywords are the same, new trapdoors will be generated every time when the keyword is searched, thus minimizing the damage caused by online/offline keyword guessing attack. Finally, the performance of the scheme is analyzed, and the proof of correctness and security are given at the same time.
Guan, C., Mohaisen, A., Sun, Z., Su, L., Ren, K., Yang, Y..  2017.  When Smart TV Meets CRN: Privacy-Preserving Fine-Grained Spectrum Access. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). :1105–1115.

Dynamic spectrum sharing techniques applied in the UHF TV band have been developed to allow secondary WiFi transmission in areas with active TV users. This technique of dynamically controlling the exclusion zone enables vastly increasing secondary spectrum re-use, compared to the "TV white space" model where TV transmitters determine the exclusion zone and only "idle" channels can be re-purposed. However, in current such dynamic spectrum sharing systems, the sensitive operation parameters of both primary TV users (PUs) and secondary users (SUs) need to be shared with the spectrum database controller (SDC) for the purpose of realizing efficient spectrum allocation. Since such SDC server is not necessarily operated by a trusted third party, those current systems might cause essential threatens to the privacy requirement from both PUs and SUs. To address this privacy issue, this paper proposes a privacy-preserving spectrum sharing system between PUs and SUs, which realizes the spectrum allocation decision process using efficient multi-party computation (MPC) technique. In this design, the SDC only performs secure computation over encrypted input from PUs and SUs such that none of the PU or SU operation parameters will be revealed to SDC. The evaluation of its performance illustrates that our proposed system based on efficient MPC techniques can perform dynamic spectrum allocation process between PUs and SUs efficiently while preserving users' privacy.

Sun, Z., Meng, L., Ariyaeeinia, A..  2015.  Distinguishable de-identified faces. 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). 04:1–6.

The k-anonymity approach adopted by k-Same face de-identification methods enables these methods to serve their purpose of privacy protection. However, it also forces every k original faces to share the same de-identified face, making it impossible to track individuals in a k-Same de-identified video. To address this issue, this paper presents an approach to the creation of distinguishable de-identified faces. This new approach can serve privacy protection perfectly whilst producing de-identified faces that are as distinguishable as their original faces.