Visible to the public Biblio

Filters: Author is Li, N.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
G
Guo, Q., Fan, J., Li, N..  2015.  The achieve of power manager application honey-pot based on sandbox. 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). :2523–2527.

Honeypot is a common method of attack capture, can maximize the reduction of cyber-attacks. However, its limited application layer simulation makes it impossible to use effectively in power system. Through research on sandboxing technology, this article implements the simulated power manager applications by packaging real power manager applications, in order to expand the honeypot applied range.

X
Xia, S., Li, N., Xiaofeng, T., Fang, C..  2018.  Multiple Attributes Based Spoofing Detection Using an Improved Clustering Algorithm in Mobile Edge Network. 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN). :242–243.

Information centric network (ICN) based Mobile Edge Computing (MEC) network has drawn growing attentions in recent years. The distributed network architecture brings new security problems, especially the identity security problem. Because of the cloud platform deployed on the edge of the MEC network, multiple channel attributes can be easily obtained and processed. Thus this paper proposes a multiple channel attributes based spoofing detection mechanism. To further reduce the complexity, we also propose an improved clustering algorithm. The simulation results indicate that the proposed spoofing detection method can provide near-optimal performance with extremely low complexity.

Z
Zhang, Z., Li, N., Xia, S., Tao, X..  2020.  Fast Cross Layer Authentication Scheme for Dynamic Wireless Network. 2020 IEEE Wireless Communications and Networking Conference (WCNC). :1—6.
Current physical layer authentication (PLA) mechanisms are mostly designed for static communications, and the accuracy degrades significantly when used in dynamic scenarios, where the network environments and wireless channels change frequently. To improve the authentication performance, it is necessary to update the hypothesis test models and parameters in time, which however brings high computational complexity and authentication delay. In this paper, we propose a lightweight cross-layer authentication scheme for dynamic communication scenarios. We use multiple characteristics based PLA to guarantee the reliability and accuracy of authentication, and propose an upper layer assisted method to ensure the performance stability. Specifically, upper layer authentication (ULA) helps to update the PLA models and parameters. By properly choosing the period of triggering ULA, a balance between complexity and performance can be easily obtained. Simulation results show that our scheme can achieve pretty good authentication performance with reduced complexity.