Visible to the public Biblio

Filters: Author is Deaconescu, Razvan  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Corneci, Vlad-Mihai, Carabas, Costin, Deaconescu, Razvan, Tapus, Nicolae.  2019.  Adding Custom Sandbox Profiles to iOS Apps. 2019 18th RoEduNet Conference: Networking in Education and Research (RoEduNet). :1–5.
The massive adoption of mobile devices by both individuals and companies is raising many security concerns. The fact that such devices are handling sensitive data makes them a target for attackers. Many attack prevention mechanisms are deployed with a last line of defense that focuses on the containment principle. Currently, iOS treats each 3rd party application alike which may lead to security flaws. We propose a framework in which each application has a custom sandboxed environment. We investigated the current confinement architecture used by Apple and built a solution on top of it.
D
Deshotels, Luke, Deaconescu, Razvan, Chiroiu, Mihai, Davi, Lucas, Enck, William, Sadeghi, Ahmad-Reza.  2016.  SandScout: Automatic Detection of Flaws in iOS Sandbox Profiles. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :704–716.

Recent literature on iOS security has focused on the malicious potential of third-party applications, demonstrating how developers can bypass application vetting and code-level protections. In addition to these protections, iOS uses a generic sandbox profile called "container" to confine malicious or exploited third-party applications. In this paper, we present the first systematic analysis of the iOS container sandbox profile. We propose the SandScout framework to extract, decompile, formally model, and analyze iOS sandbox profiles as logic-based programs. We use our Prolog-based queries to evaluate file-based security properties of the container sandbox profile for iOS 9.0.2 and discover seven classes of exploitable vulnerabilities. These attacks affect non-jailbroken devices running later versions of iOS. We are working with Apple to resolve these attacks, and we expect that SandScout will play a significant role in the development of sandbox profiles for future versions of iOS.

Deshotels, Luke, Deaconescu, Razvan, Carabas, Costin, Manda, Iulia, Enck, William, Chiroiu, Mihai, Li, Ninghui, Sadeghi, Ahmad-Reza.  2018.  iOracle: Automated Evaluation of Access Control Policies in iOS. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :117-131.

Modern operating systems, such as iOS, use multiple access control policies to define an overall protection system. However, the complexity of these policies and their interactions can hide policy flaws that compromise the security of the protection system. We propose iOracle, a framework that logically models the iOS protection system such that queries can be made to automatically detect policy flaws. iOracle models policies and runtime context extracted from iOS firmware images, developer resources, and jailbroken devices, and iOracle significantly reduces the complexity of queries by modeling policy semantics. We evaluate iOracle by using it to successfully triage executables likely to have policy flaws and comparing our results to the executables exploited in four recent jailbreaks. When applied to iOS 10, iOracle identifies previously unknown policy flaws that allow attackers to modify or bypass access control policies. For compromised system processes, consequences of these policy flaws include sandbox escapes (with respect to read/write file access) and changing the ownership of arbitrary files. By automating the evaluation of iOS access control policies, iOracle provides a practical approach to hardening iOS security by identifying policy flaws before they are exploited.

M
Musca, Constantin, Mirica, Emma, Deaconescu, Razvan.  2013.  Detecting and Analyzing Zero-Day Attacks Using Honeypots. 2013 19th International Conference on Control Systems and Computer Science. :543–548.
Computer networks are overwhelmed by self propagating malware (worms, viruses, trojans). Although the number of security vulnerabilities grows every day, not the same thing can be said about the number of defense methods. But the most delicate problem in the information security domain remains detecting unknown attacks known as zero-day attacks. This paper presents methods for isolating the malicious traffic by using a honeypot system and analyzing it in order to automatically generate attack signatures for the Snort intrusion detection/prevention system. The honeypot is deployed as a virtual machine and its job is to log as much information as it can about the attacks. Then, using a protected machine, the logs are collected remotely, through a safe connection, for analysis. The challenge is to mitigate the risk we are exposed to and at the same time search for unknown attacks.