Visible to the public Biblio

Filters: Author is Doerr, Carola  [Clear All Filters]
Conference Paper
Doerr, Carola, Lengler, Johannes.  2016.  The (1+1) Elitist Black-Box Complexity of LeadingOnes. Proceedings of the Genetic and Evolutionary Computation Conference 2016. :1131–1138.

One important goal of black-box complexity theory is the development of complexity models allowing to derive meaningful lower bounds for whole classes of randomized search heuristics. Complementing classical runtime analysis, black-box models help us understand how algorithmic choices such as the population size, the variation operators, or the selection rules influence the optimization time. One example for such a result is the Ω(n log n) lower bound for unary unbiased algorithms on functions with a unique global optimum [Lehre/Witt, GECCO 2010], which tells us that higher arity operators or biased sampling strategies are needed when trying to beat this bound. In lack of analyzing techniques, almost no non-trivial bounds are known for other restricted models. Proving such bounds therefore remains to be one of the main challenges in black-box complexity theory. With this paper we contribute to our technical toolbox for lower bound computations by proposing a new type of information-theoretic argument. We regard the permutation- and bit-invariant version of LeadingOnes and prove that its (1+1) elitist black-box complexity is Ω(n2), a bound that is matched by (1+1)-type evolutionary algorithms. The (1+1) elitist complexity of LeadingOnes is thus considerably larger than its unrestricted one, which is known to be of order n log log n [Afshani et al., 2013].

Doerr, Benjamin, Doerr, Carola, Yang, Jing.  2016.  Optimal Parameter Choices via Precise Black-Box Analysis. Proceedings of the Genetic and Evolutionary Computation Conference 2016. :1123–1130.

In classical runtime analysis it has been observed that certain working principles of an evolutionary algorithm cannot be understood by only looking at the asymptotic order of the runtime, but that more precise estimates are needed. In this work we demonstrate that the same observation applies to black-box complexity analysis. We prove that the unary unbiased black-box complexity of the classic OneMax function class is n ln(n) – cn ± o(n) for a constant c between 0.2539 and 0.2665. Our analysis yields a simple (1+1)-type algorithm achieving this runtime bound via a fitness-dependent mutation strength. When translated into a fixed-budget perspective, our algorithm with the same budget computes a solution that asymptotically is 13% closer to the optimum (given that the budget is at least 0.2675n).