Visible to the public Biblio

Filters: Author is Slavin, Rocky  [Clear All Filters]
2014-10-24
Hibshi, Hanan, Slavin, Rocky, Niu, Jianwei, Breaux, Travis D.  2014.  Rethinking Security Requirements in RE Research.

As information security became an increasing concern for software developers and users, requirements engineering (RE) researchers brought new insight to security requirements. Security requirements aim to address security at the early stages of system design while accommodating the complex needs of different stakeholders. Meanwhile, other research communities, such as usable privacy and security, have also examined these requirements with specialized goal to make security more usable for stakeholders from product owners, to system users and administrators. In this paper we report results from conducting a literature survey to compare security requirements research from RE Conferences with the Symposium on Usable Privacy and Security (SOUPS). We report similarities between the two research areas, such as common goals, technical definitions, research problems, and directions. Further, we clarify the differences between these two communities to understand how they can leverage each other’s insights. From our analysis, we recommend new directions in security requirements research mainly to expand the meaning of security requirements in RE to reflect the technological advancements that the broader field of security is experiencing. These recommendations to encourage cross- collaboration with other communities are not limited to the security requirements area; in fact, we believe they can be generalized to other areas of RE. 

2017-10-25
Slavin, Rocky, Wang, Xiaoyin, Hosseini, Mitra Bokaei, Hester, James, Krishnan, Ram, Bhatia, Jaspreet, Breaux, Travis D., Niu, Jianwei.  2016.  Toward a Framework for Detecting Privacy Policy Violations in Android Application Code. Proceedings of the 38th International Conference on Software Engineering. :25–36.

Mobile applications frequently access sensitive personal information to meet user or business requirements. Because such information is sensitive in general, regulators increasingly require mobile-app developers to publish privacy policies that describe what information is collected. Furthermore, regulators have fined companies when these policies are inconsistent with the actual data practices of mobile apps. To help mobile-app developers check their privacy policies against their apps' code for consistency, we propose a semi-automated framework that consists of a policy terminology-API method map that links policy phrases to API methods that produce sensitive information, and information flow analysis to detect misalignments. We present an implementation of our framework based on a privacy-policy-phrase ontology and a collection of mappings from API methods to policy phrases. Our empirical evaluation on 477 top Android apps discovered 341 potential privacy policy violations.

2019-11-11
Wang, Xiaoyin, Qin, Xue, Bokaei Hosseini, Mitra, Slavin, Rocky, Breaux, Travis D., Niu, Jianwei.  2018.  GUILeak: Tracing Privacy Policy Claims on User Input Data for Android Applications. 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE). :37–47.
The Android mobile platform supports billions of devices across more than 190 countries around the world. This popularity coupled with user data collection by Android apps has made privacy protection a well-known challenge in the Android ecosystem. In practice, app producers provide privacy policies disclosing what information is collected and processed by the app. However, it is difficult to trace such claims to the corresponding app code to verify whether the implementation is consistent with the policy. Existing approaches for privacy policy alignment focus on information directly accessed through the Android platform (e.g., location and device ID), but are unable to handle user input, a major source of private information. In this paper, we propose a novel approach that automatically detects privacy leaks of user-entered data for a given Android app and determines whether such leakage may violate the app's privacy policy claims. For evaluation, we applied our approach to 120 popular apps from three privacy-relevant app categories: finance, health, and dating. The results show that our approach was able to detect 21 strong violations and 18 weak violations from the studied apps.