Visible to the public Biblio

Filters: Author is Andel, Todd R.  [Clear All Filters]
Gautier, Adam M., Andel, Todd R., Benton, Ryan.  2018.  On-Device Detection via Anomalous Environmental Factors. Proceedings of the 8th Software Security, Protection, and Reverse Engineering Workshop. :5:1–5:8.
Embedded Systems (ES) underlie society's critical cyberinfrastructure and comprise the vast majority of consumer electronics, making them a prized target for dangerous malware and hardware Trojans. Malicious intrusion into these systems present a threat to national security and economic stability as globalized supply chains and tight network integration make ES more susceptible to attack than ever. High-end ES like the Xilinx Zynq-7020 system on a chip are widely used in the field and provide a representative platform for investigating the methods of cybercriminals. This research suggests a novel anomaly detection framework that could be used to detect potential zero-day exploits, undiscovered rootkits, or even maliciously implanted hardware by leveraging the Zynq architecture and real-time device-level measurements of thermal side-channels. The results of an initial investigation showed different processor workloads produce distinct thermal fingerprints that are detectable by out-of-band, digital logic-based thermal sensors.
Moore, Samuel, Yampolskiy, Mark, Gatlin, Jacob, McDonald, Jeffrey T., Andel, Todd R..  2016.  Buffer Overflow Attack's Power Consumption Signatures. Proceedings of the 6th Workshop on Software Security, Protection, and Reverse Engineering. :6:1–6:7.

Embedded Systems (ES) are an integral part of Cyber-Physical Systems (CPS), the Internet of Things (IoT), and consumer devices like smartphones. ES often have limited resources, and - if used in CPS and IoT - have to satisfy real time requirements. Therefore, ES rarely employ the security measures established for computer systems and networks. Due to the growth of both CPS and IoT it is important to identify ongoing attacks on ES without interfering with realtime constraints. Furthermore, security solutions that can be retrofit to legacy systems are desirable, especially when ES are used in Industrial Control Systems (ICS) that often maintain the same hardware for decades. To tackle this problem, several researchers have proposed using side-channels (i.e., physical emanations accompanying cyber processes) to detect such attacks. While prior work focuses on the anomaly detection approach, this might not always be sufficient, especially in complex ES whose behavior depends on the input data. In this paper, we determine whether one of the most common attacks - a buffer overflow attack - generates distinct side-channel signatures if executed on a vulnerable ES. We only consider the power consumption side-channel. We collect and analyze power traces from normal program operation and four cases of buffer overflow attack categories: (i) crash program execution, (ii) injection of executable code, (iii) return to existing function, and (iv) Return Oriented Programming (ROP) with gadgets. Our analysis shows that for some of these cases a power signature-based detection of a buffer overflow attack is possible.