Visible to the public Biblio

Filters: Author is Christopher Theisen  [Clear All Filters]
Christopher Theisen, Brendan Murphy, Kim Herzig, Laurie Williams.  Submitted.  Risk-Based Attack Surface Approximation: How Much Data is Enough? International Conference on Software Engineering (ICSE) Software Engineering in Practice (SEIP) 2017.

Proactive security reviews and test efforts are a necessary component of the software development lifecycle. Resource limitations often preclude reviewing the entire code
base. Making informed decisions on what code to review can improve a team’s ability to find and remove vulnerabilities. Risk-based attack surface approximation (RASA) is a technique that uses crash dump stack traces to predict what code may contain exploitable vulnerabilities. The goal of this research is to help software development teams prioritize security efforts by the efficient development of a risk-based attack surface approximation. We explore the use of RASA using Mozilla Firefox and Microsoft Windows stack traces from crash dumps. We create RASA at the file level for Firefox, in which the 15.8% of the files that were part of the approximation contained 73.6% of the vulnerabilities seen for the product. We also explore the effect of random sampling of crashes on the approximation, as it may be impractical for organizations to store and process every crash received. We find that 10-fold random sampling of crashes at a rate of 10% resulted in 3% less vulnerabilities identified than using the entire set of stack traces for Mozilla Firefox. Sampling crashes in Windows 8.1 at a rate of 40% resulted in insignificant differences in vulnerability and file coverage as compared to a rate of 100%.

Christopher Theisen, Hyunwoo Sohn, Dawson Tripp, Laurie Williams.  2018.  BP: Profiling Vulnerabilities on the Attack Surface. IEEE SecDev.

Security practitioners use the attack surface of software systems to prioritize areas of systems to test and analyze. To date, approaches for predicting which code artifacts are vulnerable have utilized a binary classification of code as vulnerable or not vulnerable. To better understand the strengths and weaknesses of vulnerability prediction approaches, vulnerability datasets with classification and severity data are needed. The goal of this paper is to help researchers and practitioners make security effort prioritization decisions by evaluating which classifications and severities of vulnerabilities are on an attack surface approximated using crash dump stack traces. In this work, we use crash dump stack traces to approximate the attack surface of Mozilla Firefox. We then generate a dataset of 271 vulnerable files in Firefox, classified using the Common Weakness Enumeration (CWE) system. We use these files as an oracle for the evaluation of the attack surface generated using crash data. In the Firefox vulnerability dataset, 14 different classifications of vulnerabilities appeared at least once. In our study, 85.3%
of vulnerable files were on the attack surface generated using crash data. We found no difference between the severity of vulnerabilities found on the attack surface generated using crash data and vulnerabilities not occurring on the attack surface. Additionally, we discuss lessons learned during the development of this vulnerability dataset.