Visible to the public Biblio

Filters: Author is Tehranipoor, Mark M.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Yang, Kun, Forte, Domenic, Tehranipoor, Mark M..  2017.  CDTA: A Comprehensive Solution for Counterfeit Detection, Traceability, and Authentication in the IoT Supply Chain. ACM Transactions on Design Automation of Electronic Systems (TODAES). 22:42:1-42:31.

The Internet of Things (IoT) is transforming the way we live and work by increasing the connectedness of people and things on a scale that was once unimaginable. However, the vulnerabilities in the IoT supply chain have raised serious concerns about the security and trustworthiness of IoT devices and components within them. Testing for device provenance, detection of counterfeit integrated circuits (ICs) and systems, and traceability of IoT devices are challenging issues to address. In this article, we develop a novel radio-frequency identification (RFID)-based system suitable for counterfeit detection, traceability, and authentication in the IoT supply chain called CDTA. CDTA is composed of different types of on-chip sensors and in-system structures that collect necessary information to detect multiple counterfeit IC types (recycled, cloned, etc.), track and trace IoT devices, and verify the overall system authenticity. Central to CDTA is an RFID tag employed as storage and a channel to read the information from different types of chips on the printed circuit board (PCB) in both power-on and power-off scenarios. CDTA sensor data can also be sent to the remote server for authentication via an encrypted Ethernet channel when the IoT device is deployed in the field. A novel board ID generator is implemented by combining outputs of physical unclonable functions (PUFs) embedded in the RFID tag and different chips on the PCB. A light-weight RFID protocol is proposed to enable mutual authentication between RFID readers and tags. We also implement a secure interchip communication on the PCB. Simulations and experimental results using Spartan 3E FPGAs demonstrate the effectiveness of this system. The efficiency of the radio-frequency (RF) communication has also been verified via a PCB prototype with a printed slot antenna.

Guin, Ujjwal, Shi, Qihang, Forte, Domenic, Tehranipoor, Mark M..  2016.  FORTIS: A Comprehensive Solution for Establishing Forward Trust for Protecting IPs and ICs. ACM Trans. Des. Autom. Electron. Syst.. 21:63:1–63:20.

With the advent of globalization in the semiconductor industry, it is necessary to prevent unauthorized usage of third-party IPs (3PIPs), cloning and unwanted modification of 3PIPs, and unauthorized production of ICs. Due to the increasing complexity of ICs, system-on-chip (SoC) designers use various 3PIPs in their design to reduce time-to-market and development costs, which creates a trust issue between the SoC designer and the IP owners. In addition, as the ICs are fabricated around the globe, the SoC designers give fabrication contracts to offshore foundries to manufacture ICs and have little control over the fabrication process, including the total number of chips fabricated. Similarly, the 3PIP owners lack control over the number of fabricated chips and/or the usage of their IPs in an SoC. Existing research only partially addresses the problems of IP piracy and IC overproduction, and to the best of our knowledge, there is no work that considers IP overuse. In this article, we present a comprehensive solution for preventing IP piracy and IC overproduction by assuring forward trust between all entities involved in the SoC design and fabrication process. We propose a novel design flow to prevent IC overproduction and IP overuse. We use an existing logic encryption technique to obfuscate the netlist of an SoC or a 3PIP and propose a modification to enable manufacturing tests before the activation of chips which is absolutely necessary to prevent overproduction. We have used asymmetric and symmetric key encryption, in a fashion similar to Pretty Good Privacy (PGP), to transfer keys from the SoC designer or 3PIP owners to the chips. In addition, we also propose to attach an IP digest (a cryptographic hash of the entire IP) to the header of an IP to prevent modification of the IP by the SoC designers. We have shown that our approach is resistant to various attacks with the cost of minimal area overhead.

Guo, Xiaolong, Dutta, Raj Gautam, He, Jiaji, Tehranipoor, Mark M., Jin, Yier.  2019.  QIF-Verilog: Quantitative Information-Flow based Hardware Description Languages for Pre-Silicon Security Assessment. 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :91—100.
Hardware vulnerabilities are often due to design mistakes because the designer does not sufficiently consider potential security vulnerabilities at the design stage. As a result, various security solutions have been developed to protect ICs, among which the language-based hardware security verification serves as a promising solution. The verification process will be performed while compiling the HDL of the design. However, similar to other formal verification methods, the language-based approach also suffers from scalability issue. Furthermore, existing solutions either lead to hardware overhead or are not designed for vulnerable or malicious logic detection. To alleviate these challenges, we propose a new language based framework, QIF-Verilog, to evaluate the trustworthiness of a hardware system at register transfer level (RTL). This framework introduces a quantified information flow (QIF) model and extends Verilog type systems to provide more expressiveness in presenting security rules; QIF is capable of checking the security rules given by the hardware designer. Secrets are labeled by the new type and then parsed to data flow, to which a QIF model will be applied. To demonstrate our approach, we design a compiler for QIF-Verilog and perform vulnerability analysis on benchmarks from Trust-Hub and OpenCore. We show that Trojans or design faults that leak information from circuit outputs can be detected automatically, and that our method evaluates the security of the design correctly.
Shi, Qihang, Xiao, Kan, Forte, Domenic, Tehranipoor, Mark M..  2017.  Securing Split Manufactured ICs with Wire Lifting Obfuscated Built-In Self-Authentication. Proceedings of the on Great Lakes Symposium on VLSI 2017. :339–344.
Hardware Trojan insertion and intellectual property (IP) theft are two major concerns when dealing with untrusted foundries. Most existing mitigation techniques are limited in protecting against both vulnerabilities. Split manufacturing is designed to stop IP piracy and IC cloning, but it fails at preventing untargeted hardware Trojan insertion and incurs significant overheads when high level of security is demanded. Built-in self-authentication (BISA) is a low cost technique for preventing and detecting hardware Trojan insertion, but is vulnerable to IP piracy, IC cloning or redesign attacks, especially on original circuitry. In this paper, we propose an obfuscated built-in self-authentication (OBISA) technique that combines and optimizes both technique so that they complement and improve security against both vulnerabilities. Performance of the proposed OBISA technique is presented with experimental implementation on same benchmark circuits as used in the existing wire lifting technique. The security performance is evaluated with the most popular split manufacturing security metrics.