Visible to the public Biblio

Filters: Author is Wang, Tianhao  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Wang, Tianhao, Zhao, Yunlei.  2016.  Secure Dynamic SSE via Access Indistinguishable Storage. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :535–546.

Cloud storage services such as Dropbox [1] and Google Drive [2] are becoming more and more popular. On the one hand, they provide users with mobility, scalability, and convenience. However, privacy issues arise when the storage becomes not fully controlled by users. Although modern encryption schemes are effective at protecting content of data, there are two drawbacks of the encryption-before-outsourcing approach: First, one kind of sensitive information, Access Pattern of the data is left unprotected. Moreover, encryption usually makes the data difficult to use. In this paper, we propose AIS (Access Indistinguishable Storage), the first client-side system that can partially conceal access pattern of the cloud storage in constant time. Besides data content, AIS can conceal information about the number of initial files, and length of each initial file. When it comes to the access phase after initiation, AIS can effectively conceal the behavior (read or write) and target file of the current access. Moreover, the existence and length of each file will remain confidential as long as there is no access after initiation. One application of AIS is SSE (Searchable Symmetric Encryption), which makes the encrypted data searchable. Based on AIS, we propose SBA (SSE Built on AIS). To the best of our knowledge, SBA is safer than any other SSE systems of the same complexity, and SBA is the first to conceal whether current keyword was queried before, the first to conceal whether current operation is an addition or deletion, and the first to support direct modification of files.

P
Cormode, Graham, Jha, Somesh, Kulkarni, Tejas, Li, Ninghui, Srivastava, Divesh, Wang, Tianhao.  2018.  Privacy at Scale: Local Differential Privacy in Practice. Proceedings of the 2018 International Conference on Management of Data. :1655–1658.
Local differential privacy (LDP), where users randomly perturb their inputs to provide plausible deniability of their data without the need for a trusted party, has been adopted recently by several major technology organizations, including Google, Apple and Microsoft. This tutorial aims to introduce the key technical underpinnings of these deployed systems, to survey current research that addresses related problems within the LDP model, and to identify relevant open problems and research directions for the community.
C
Zhang, Zhikun, Wang, Tianhao, Li, Ninghui, He, Shibo, Chen, Jiming.  2018.  CALM: Consistent Adaptive Local Marginal for Marginal Release Under Local Differential Privacy. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :212–229.
Marginal tables are the workhorse of capturing the correlations among a set of attributes. We consider the problem of constructing marginal tables given a set of user's multi-dimensional data while satisfying Local Differential Privacy (LDP), a privacy notion that protects individual user's privacy without relying on a trusted third party. Existing works on this problem perform poorly in the high-dimensional setting; even worse, some incur very expensive computational overhead. In this paper, we propose CALM, Consistent Adaptive Local Marginal, that takes advantage of the careful challenge analysis and performs consistently better than existing methods. More importantly, CALM can scale well with large data dimensions and marginal sizes. We conduct extensive experiments on several real world datasets. Experimental results demonstrate the effectiveness and efficiency of CALM over existing methods.
A
Wang, Tianhao, Kerschbaum, Florian.  2019.  Attacks on Digital Watermarks for Deep Neural Networks. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2622—2626.
Training deep neural networks is a computationally expensive task. Furthermore, models are often derived from proprietary datasets that have been carefully prepared and labelled. Hence, creators of deep learning models want to protect their models against intellectual property theft. However, this is not always possible, since the model may, e.g., be embedded in a mobile app for fast response times. As a countermeasure watermarks for deep neural networks have been developed that embed secret information into the model. This information can later be retrieved by the creator to prove ownership. Uchida et al. proposed the first such watermarking method. The advantage of their scheme is that it does not compromise the accuracy of the model prediction. However, in this paper we show that their technique modifies the statistical distribution of the model. Using this modification we can not only detect the presence of a watermark, but even derive its embedding length and use this information to remove the watermark by overwriting it. We show analytically that our detection algorithm follows consequentially from their embedding algorithm and propose a possible countermeasure. Our findings shall help to refine the definition of undetectability of watermarks for deep neural networks.