Visible to the public Biblio

Filters: Author is Mohapatra, Prasant  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Jiang, Jianguo, Chen, Jiuming, Gu, Tianbo, Choo, Kim-Kwang Raymond, Liu, Chao, Yu, Min, Huang, Weiqing, Mohapatra, Prasant.  2019.  Anomaly Detection with Graph Convolutional Networks for Insider Threat and Fraud Detection. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :109—114.

Anomaly detection generally involves the extraction of features from entities' or users' properties, and the design of anomaly detection models using machine learning or deep learning algorithms. However, only considering entities' property information could lead to high false positives. We posit the importance of also considering connections or relationships between entities in the detecting of anomalous behaviors and associated threat groups. Therefore, in this paper, we design a GCN (graph convolutional networks) based anomaly detection model to detect anomalous behaviors of users and malicious threat groups. The GCN model could characterize entities' properties and structural information between them into graphs. This allows the GCN based anomaly detection model to detect both anomalous behaviors of individuals and associated anomalous groups. We then evaluate the proposed model using a real-world insider threat data set. The results show that the proposed model outperforms several state-of-art baseline methods (i.e., random forest, logistic regression, SVM, and CNN). Moreover, the proposed model can also be applied to other anomaly detection applications.

D
Zhang, Huanle, Du, Wan, Zhou, Pengfei, Li, Mo, Mohapatra, Prasant.  2016.  DopEnc: Acoustic-based Encounter Profiling Using Smartphones. Proceedings of the 22Nd Annual International Conference on Mobile Computing and Networking. :294–307.
This paper presents DopEnc, an acoustic-based encounter profiling system on smartphones. DopEnc can automatically identify the persons that users interact with in the context of encountering. DopEnc performs encounter profiling in two major steps: (1) Doppler profiling to detect that two persons approach and stop in front of each other via an effective trajectory, and (2) voice profiling to confirm that they are thereafter engaged in an interactive conversation. DopEnc is further extended to support parallel acoustic exploration of many users by incorporating a unique multiple access scheme within the limited inaudible acoustic frequency band. All implementation of DopEnc is based on commodity sensors like speakers, microphones and accelerometers integrated on commercial-off-the-shelf smartphones. We evaluate DopEnc with detailed experiments and a real use-case study of 11 participants. Overall DopEnc achieves an accuracy of 6.9% false positive and 9.7% false negative in real usage.
F
Fang, Zheng, Fu, Hao, Gu, Tianbo, Qian, Zhiyun, Jaeger, Trent, Mohapatra, Prasant.  2019.  ForeSee: A Cross-Layer Vulnerability Detection Framework for the Internet of Things. 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :236–244.
The exponential growth of Internet-of-Things (IoT) devices not only brings convenience but also poses numerous challenging safety and security issues. IoT devices are distributed, highly heterogeneous, and more importantly, directly interact with the physical environment. In IoT systems, the bugs in device firmware, the defects in network protocols, and the design flaws in system configurations all may lead to catastrophic accidents, causing severe threats to people's lives and properties. The challenge gets even more escalated as the possible attacks may be chained together in a long sequence across multiple layers, rendering the current vulnerability analysis inapplicable. In this paper, we present ForeSee, a cross-layer formal framework to comprehensively unveil the vulnerabilities in IoT systems. ForeSee generates a novel attack graph that depicts all of the essential components in IoT, from low-level physical surroundings to high-level decision-making processes. The corresponding graph-based analysis then enables ForeSee to precisely capture potential attack paths. An optimization algorithm is further introduced to reduce the computational complexity of our analysis. The illustrative case studies show that our multilayer modeling can capture threats ignored by the previous approaches.
U
Das, Aveek K., Pathak, Parth H., Chuah, Chen-Nee, Mohapatra, Prasant.  2016.  Uncovering Privacy Leakage in BLE Network Traffic of Wearable Fitness Trackers. Proceedings of the 17th International Workshop on Mobile Computing Systems and Applications. :99–104.

There has been a tremendous increase in popularity and adoption of wearable fitness trackers. These fitness trackers predominantly use Bluetooth Low Energy (BLE) for communicating and syncing the data with user's smartphone. This paper presents a measurement-driven study of possible privacy leakage from BLE communication between the fitness tracker and the smartphone. Using real BLE traffic traces collected in the wild and in controlled experiments, we show that majority of the fitness trackers use unchanged BLE address while advertising, making it feasible to track them. The BLE traffic of the fitness trackers is found to be correlated with the intensity of user's activity, making it possible for an eavesdropper to determine user's current activity (walking, sitting, idle or running) through BLE traffic analysis. Furthermore, we also demonstrate that the BLE traffic can represent user's gait which is known to be distinct from user to user. This makes it possible to identify a person (from a small group of users) based on the BLE traffic of her fitness tracker. As BLE-based wearable fitness trackers become widely adopted, our aim is to identify important privacy implications of their usage and discuss prevention strategies.