Visible to the public Biblio

Filters: Author is Tseng, Yi-Fan  [Clear All Filters]
2020-08-13
Fan, Chun-I, Tseng, Yi-Fan, Cheng, Chen-Hsi, Kuo, Hsin-Nan, Huang, Jheng-Jia, Shih, Yu-Tse.  2019.  Anonymous Authentication and Key Agreement Protocol for LTE Networks. 2019 2nd International Conference on Communication Engineering and Technology (ICCET). :68—71.
In 2008, 3GPP proposed the Long Term Evolution (LTE) in version 8. The standard is used in high-speed wireless communication standard for mobile terminal in telecommunication. It supports subscribers to access internet via specific base station after authentication. These authentication processes were defined in standard TS33.401 and TS33.102 by 3GPP. Authenticated processing standard inherits the authentication and key agreement protocol in RFC3310 and has been changed into authenticated scheme suitable for LTE. In the origin LTE authenticated scheme, subscribers need to transfer its International Mobile Subscriber Identity (IMSI) with plaintext. The IMSI might be intercepted and traced by fake stations. In this work, we propose a new scheme with a pseudo IMSI so that fake stations cannot get the real IMSI and trace the subscriber. The subscriber can keep anonymous and be confirmed by the base station for the legality. The pseudo identity is unlinkable to the subscriber. Not only does the proposed scheme enhance the security but also it just has some extra costs for signature generation and verification as compared to the original scheme.
2020-05-29
Tseng, Yi-Fan, Fan, Chun-I, Wu, Chin-Yu.  2019.  FGAC-NDN: Fine-Grained Access Control for Named Data Networks. IEEE Transactions on Network and Service Management. 16:143—152.

Named data network (NDN) is one of the most promising information-centric networking architectures, where the core concept is to focus on the named data (or contents) themselves. Users in NDN can easily send a request packet to get the desired content regardless of its address. The routers in NDN have cache functionality to make the users instantly retrieve the desired file. Thus, the user can immediately get the desired file from the nearby nodes instead of the remote host. Nevertheless, NDN is a novel proposal and there are still some open issues to be resolved. In view of previous research, it is a challenge to achieve access control on a specific user and support potential receivers simultaneously. In order to solve it, we present a fine-grained access control mechanism tailored for NDN, supporting data confidentiality, potential receivers, and mobility. Compared to previous works, this is the first to support fine-grained access control and potential receivers. Furthermore, the proposed scheme achieves provable security under the DBDH assumption.

2020-01-07
Chen, Wei-Hao, Fan, Chun-I, Tseng, Yi-Fan.  2018.  Efficient Key-Aggregate Proxy Re-Encryption for Secure Data Sharing in Clouds. 2018 IEEE Conference on Dependable and Secure Computing (DSC). :1-4.

Cloud computing undoubtedly is the most unparalleled technique in rapidly developing industries. Protecting sensitive files stored in the clouds from being accessed by malicious attackers is essential to the success of the clouds. In proxy re-encryption schemes, users delegate their encrypted files to other users by using re-encryption keys, which elegantly transfers the users' burden to the cloud servers. Moreover, one can adopt conditional proxy re-encryption schemes to employ their access control policy on the files to be shared. However, we recognize that the size of re-encryption keys will grow linearly with the number of the condition values, which may be impractical in low computational devices. In this paper, we combine a key-aggregate approach and a proxy re-encryption scheme into a key-aggregate proxy re-encryption scheme. It is worth mentioning that the proposed scheme is the first key-aggregate proxy re-encryption scheme. As a side note, the size of re-encryption keys is constant.

2017-05-17
Huang, Jheng-Jia, Juang, Wen-Shenq, Fan, Chun-I, Tseng, Yi-Fan, Kikuchi, Hiroaki.  2016.  Lightweight Authentication Scheme with Dynamic Group Members in IoT Environments. Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services. :88–93.

In IoT environments, the user may have many devices to connect each other and share the data. Also, the device will not have the powerful computation and storage ability. Many studies have focused on the lightweight authentication between the cloud server and the client in this environment. They can use the cloud server to help sensors or proxies to finish the authentication. But in the client side, how to create the group session key without the cloud capability is the most important issue in IoT environments. The most popular application network of IoT environments is the wireless body area network (WBAN). In WBAN, the proxy usually needs to control and monitor user's health data transmitted from the sensors. In this situation, the group authentication and group session key generation is needed. In this paper, in order to provide an efficient and robust group authentication and group session key generation in the client side of IoT environments, we propose a lightweight authentication scheme with dynamic group members in IoT environments. Our proposed scheme can satisfy the properties including the flexible generation of shared group keys, the dynamic participation, the active revocation, the low communication and computation cost, and no time synchronization problem. Also our scheme can achieve the security requirements including the mutual authentication, the group session key agreement, and prevent all various well-known attacks.