Visible to the public Biblio

Filters: Author is Bodden, Eric  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
Piskachev, Goran, Nguyen Quang Do, Lisa, Johnson, Oshando, Bodden, Eric.  2019.  SWAN\_ASSIST: Semi-Automated Detection of Code-Specific, Security-Relevant Methods. 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1094–1097.
To detect specific types of bugs and vulnerabilities, static analysis tools must be correctly configured with security-relevant methods (SRM), e.g., sources, sinks, sanitizers and authentication methods-usually a very labour-intensive and error-prone process. This work presents the semi-automated tool SWAN\_ASSIST, which aids the configuration with an IntelliJ plugin based on active machine learning. It integrates our novel automated machine-learning approach SWAN, which identifies and classifies Java SRM. SWAN\_ASSIST further integrates user feedback through iterative learning. SWAN\_ASSIST aids developers by asking them to classify at each point in time exactly those methods whose classification best impact the classification result. Our experiments show that SWAN\_ASSIST classifies SRM with a high precision, and requires a relatively low effort from the user. A video demo of SWAN\_ASSIST can be found at https://youtu.be/fSyD3V6EQOY. The source code is available at https://github.com/secure-software-engineering/swan.
N
Nguyen Quang Do, Lisa, Bodden, Eric.  2018.  Gamifying Static Analysis. Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. :714-718.

In the past decades, static code analysis has become a prevalent means to detect bugs and security vulnerabilities in software systems. As software becomes more complex, analysis tools also report lists of increasingly complex warnings that developers need to address on a daily basis. The novel insight we present in this work is that static analysis tools and video games both require users to take on repetitive and challenging tasks. Importantly, though, while good video games manage to keep players engaged, static analysis tools are notorious for their lacking user experience, which prevents developers from using them to their full potential, frequently resulting in dissatisfaction and even tool abandonment. We show parallels between gaming and using static analysis tools, and advocate that the user-experience issues of analysis tools can be addressed by looking at the analysis tooling system as a whole, and by integrating gaming elements that keep users engaged, such as providing immediate and clear feedback, collaborative problem solving, or motivators such as points and badges.

Nadi, Sarah, Krüger, Stefan, Mezini, Mira, Bodden, Eric.  2016.  Jumping Through Hoops: Why Do Java Developers Struggle with Cryptography APIs? Proceedings of the 38th International Conference on Software Engineering. :935–946.

To protect sensitive data processed by current applications, developers, whether security experts or not, have to rely on cryptography. While cryptography algorithms have become increasingly advanced, many data breaches occur because developers do not correctly use the corresponding APIs. To guide future research into practical solutions to this problem, we perform an empirical investigation into the obstacles developers face while using the Java cryptography APIs, the tasks they use the APIs for, and the kind of (tool) support they desire. We triangulate data from four separate studies that include the analysis of 100 StackOverflow posts, 100 GitHub repositories, and survey input from 48 developers. We find that while developers find it difficult to use certain cryptographic algorithms correctly, they feel surprisingly confident in selecting the right cryptography concepts (e.g., encryption vs. signatures). We also find that the APIs are generally perceived to be too low-level and that developers prefer more task-based solutions.

L
Luo, Linghui, Bodden, Eric, Späth, Johannes.  2019.  A Qualitative Analysis of Android Taint-Analysis Results. 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). :102–114.
In the past, researchers have developed a number of popular taint-analysis approaches, particularly in the context of Android applications. Numerous studies have shown that automated code analyses are adopted by developers only if they yield a good "signal to noise ratio", i.e., high precision. Many previous studies have reported analysis precision quantitatively, but this gives little insight into what can and should be done to increase precision further. To guide future research on increasing precision, we present a comprehensive study that evaluates static Android taint-analysis results on a qualitative level. To unravel the exact nature of taint flows, we have designed COVA, an analysis tool to compute partial path constraints that inform about the circumstances under which taint flows may actually occur in practice. We have conducted a qualitative study on the taint flows reported by FlowDroid in 1,022 real-world Android applications. Our results reveal several key findings: Many taint flows occur only under specific conditions, e.g., environment settings, user interaction, I/O. Taint analyses should consider the application context to discern such situations. COVA shows that few taint flows are guarded by multiple different kinds of conditions simultaneously, so tools that seek to confirm true positives dynamically can concentrate on one kind at a time, e.g., only simulating user interactions. Lastly, many false positives arise due to a too liberal source/sink configuration. Taint analyses must be more carefully configured, and their configuration could benefit from better tool assistance.
H
Holzinger, Philipp, Triller, Stefan, Bartel, Alexandre, Bodden, Eric.  2016.  An In-Depth Study of More Than Ten Years of Java Exploitation. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :779–790.
When created, the Java platform was among the first runtimes designed with security in mind. Yet, numerous Java versions were shown to contain far-reaching vulnerabilities, permitting denial-of-service attacks or even worse allowing intruders to bypass the runtime's sandbox mechanisms, opening the host system up to many kinds of further attacks. This paper presents a systematic in-depth study of 87 publicly available Java exploits found in the wild. By collecting, minimizing and categorizing those exploits, we identify their commonalities and root causes, with the goal of determining the weak spots in the Java security architecture and possible countermeasures. Our findings reveal that the exploits heavily rely on a set of nine weaknesses, including unauthorized use of restricted classes and confused deputies in combination with caller-sensitive methods. We further show that all attack vectors implemented by the exploits belong to one of three categories: single-step attacks, restricted-class attacks, and information hiding attacks. The analysis allows us to propose ideas for improving the security architecture to spawn further research in this area.
D
Do, Lisa Nguyen Quang, Ali, Karim, Livshits, Benjamin, Bodden, Eric, Smith, Justin, Murphy-Hill, Emerson.  2017.  Just-in-time Static Analysis. Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis. :307–317.
We present the concept of Just-In-Time (JIT) static analysis that interleaves code development and bug fixing in an integrated development environment. Unlike traditional batch-style analysis tools, a JIT analysis tool presents warnings to code developers over time, providing the most relevant results quickly, and computing less relevant results incrementally later. In this paper, we describe general guidelines for designing JIT analyses. We also present a general recipe for transforming static data-flow analyses to JIT analyses through a concept of layered analysis execution. We illustrate this transformation through CHEETAH, a JIT taint analysis for Android applications. Our empirical evaluation of CHEETAH on real-world applications shows that our approach returns warnings quickly enough to avoid disrupting the normal workflow of developers. This result is confirmed by our user study, in which developers fixed data leaks twice as fast when using CHEETAH compared to an equivalent batch-style analysis.