Visible to the public Biblio

Filters: Author is Giuffrida, Cristiano  [Clear All Filters]
Kurth, Michael, Gras, Ben, Andriesse, Dennis, Giuffrida, Cristiano, Bos, Herbert, Razavi, Kaveh.  2020.  NetCAT: Practical Cache Attacks from the Network. 2020 IEEE Symposium on Security and Privacy (SP). :20—38.
Increased peripheral performance is causing strain on the memory subsystem of modern processors. For example, available DRAM throughput can no longer sustain the traffic of a modern network card. Scrambling to deliver the promised performance, instead of transferring peripheral data to and from DRAM, modern Intel processors perform I/O operations directly on the Last Level Cache (LLC). While Direct Cache Access (DCA) instead of Direct Memory Access (DMA) is a sensible performance optimization, it is unfortunately implemented without care for security, as the LLC is now shared between the CPU and all the attached devices, including the network card.In this paper, we reverse engineer the behavior of DCA, widely referred to as Data-Direct I/O (DDIO), on recent Intel processors and present its first security analysis. Based on our analysis, we present NetCAT, the first Network-based PRIME+PROBE Cache Attack on the processor's LLC of a remote machine. We show that NetCAT not only enables attacks in cooperative settings where an attacker can build a covert channel between a network client and a sandboxed server process (without network), but more worryingly, in general adversarial settings. In such settings, NetCAT can enable disclosure of network timing-based sensitive information. As an example, we show a keystroke timing attack on a victim SSH connection belonging to another client on the target server. Our results should caution processor vendors against unsupervised sharing of (additional) microarchitectural components with peripherals exposed to malicious input.
Kroes, Taddeus, Altinay, Anil, Nash, Joseph, Na, Yeoul, Volckaert, Stijn, Bos, Herbert, Franz, Michael, Giuffrida, Cristiano.  2018.  BinRec: Attack Surface Reduction Through Dynamic Binary Recovery. Proceedings of the 2018 Workshop on Forming an Ecosystem Around Software Transformation. :8-13.

Compile-time specialization and feature pruning through static binary rewriting have been proposed repeatedly as techniques for reducing the attack surface of large programs, and for minimizing the trusted computing base. We propose a new approach to attack surface reduction: dynamic binary lifting and recompilation. We present BinRec, a binary recompilation framework that lifts binaries to a compiler-level intermediate representation (IR) to allow complex transformations on the captured code. After transformation, BinRec lowers the IR back to a "recovered" binary, which is semantically equivalent to the input binary, but does have its unnecessary features removed. Unlike existing approaches, which are mostly based on static analysis and rewriting, our framework analyzes and lifts binaries dynamically. The crucial advantage is that we can not only observe the full program including all of its dependencies, but we can also determine which program features the end-user actually uses. We evaluate the correctness and performance of BinRec, and show that our approach enables aggressive pruning of unwanted features in COTS binaries.

Jain, Vivek, Rawat, Sanjay, Giuffrida, Cristiano, Bos, Herbert.  2018.  TIFF: Using Input Type Inference To Improve Fuzzing. Proceedings of the 34th Annual Computer Security Applications Conference. :505-517.

Developers commonly use fuzzing techniques to hunt down all manner of memory corruption vulnerabilities during the testing phase. Irrespective of the fuzzer, input mutation plays a central role in providing adequate code coverage, as well as in triggering bugs. However, each class of memory corruption bugs requires a different trigger condition. While the goal of a fuzzer is to find bugs, most existing fuzzers merely approximate this goal by targeting their mutation strategies toward maximizing code coverage. In this work, we present a new mutation strategy that maximizes the likelihood of triggering memory-corruption bugs by generating fewer, but better inputs. In particular, our strategy achieves bug-directed mutation by inferring the type of the input bytes. To do so, it tags each offset of the input with a basic type (e.g., 32-bit integer, string, array etc.), while deriving mutation rules for specific classes of bugs. We infer types by means of in-memory data-structure identification and dynamic taint analysis, and implement our novel mutation strategy in a fully functional fuzzer which we call TIFF (Type Inference-based Fuzzing Framework). Our evaluation on real-world applications shows that type-based fuzzing triggers bugs much earlier than existing solutions, while maintaining high code coverage. For example, on several real-world applications and libraries (e.g., poppler, mpg123 etc.), we find real bugs (with known CVEs) in almost half of the time and upto an order of magnitude fewer inputs than state-of-the-art fuzzers.

Stanciu, Valeriu-Daniel, Spolaor, Riccardo, Conti, Mauro, Giuffrida, Cristiano.  2016.  On the Effectiveness of Sensor-enhanced Keystroke Dynamics Against Statistical Attacks. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :105–112.

In recent years, simple password-based authentication systems have increasingly proven ineffective for many classes of real-world devices. As a result, many researchers have concentrated their efforts on the design of new biometric authentication systems. This trend has been further accelerated by the advent of mobile devices, which offer numerous sensors and capabilities to implement a variety of mobile biometric authentication systems. Along with the advances in biometric authentication, however, attacks have also become much more sophisticated and many biometric techniques have ultimately proven inadequate in face of advanced attackers in practice. In this paper, we investigate the effectiveness of sensor-enhanced keystroke dynamics, a recent mobile biometric authentication mechanism that combines a particularly rich set of features. In our analysis, we consider different types of attacks, with a focus on advanced attacks that draw from general population statistics. Such attacks have already been proven effective in drastically reducing the accuracy of many state-of-the-art biometric authentication systems. We implemented a statistical attack against sensor-enhanced keystroke dynamics and evaluated its impact on detection accuracy. On one hand, our results show that sensor-enhanced keystroke dynamics are generally robust against statistical attacks with a marginal equal-error rate impact (textless0.14%). On the other hand, our results show that, surprisingly, keystroke timing features non-trivially weaken the security guarantees provided by sensor features alone. Our findings suggest that sensor dynamics may be a stronger biometric authentication mechanism against recently proposed practical attacks.

Bacs, Andrei, Giuffrida, Cristiano, Grill, Bernhard, Bos, Herbert.  2016.  Slick: An Intrusion Detection System for Virtualized Storage Devices. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :2033–2040.

Cloud computing is rapidly reshaping the server administration landscape. The widespread use of virtualization and the increasingly high server consolidation ratios, in particular, have introduced unprecedented security challenges for users, increasing the exposure to intrusions and opening up new opportunities for attacks. Deploying security mechanisms in the hypervisor to detect and stop intrusion attempts is a promising strategy to address this problem. Existing hypervisor-based solutions, however, are typically limited to very specific classes of attacks and introduce exceedingly high performance overhead for production use. In this paper, we present Slick (Storage-Level Intrusion ChecKer), an intrusion detection system (IDS) for virtualized storage devices. Slick detects intrusion attempts by efficiently and transparently monitoring write accesses to critical regions on storage devices. The low-overhead monitoring component operates entirely inside the hypervisor, with no introspection or modifications required in the guest VMs. Using Slick, users can deploy generic IDS rules to detect a broad range of real-world intrusions in a flexible and practical way. Experimental results confirm that Slick is effective at enhancing the security of virtualized servers, while imposing less than 5% overhead in production.

Haller, Istvan, Jeon, Yuseok, Peng, Hui, Payer, Mathias, Giuffrida, Cristiano, Bos, Herbert, van der Kouwe, Erik.  2016.  TypeSan: Practical Type Confusion Detection. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :517–528.

The low-level C++ programming language is ubiquitously used for its modularity and performance. Typecasting is a fundamental concept in C++ (and object-oriented programming in general) to convert a pointer from one object type into another. However, downcasting (converting a base class pointer to a derived class pointer) has critical security implications due to potentially different object memory layouts. Due to missing type safety in C++, a downcasted pointer can violate a programmer's intended pointer semantics, allowing an attacker to corrupt the underlying memory in a type-unsafe fashion. This vulnerability class is receiving increasing attention and is known as type confusion (or bad-casting). Several existing approaches detect different forms of type confusion, but these solutions are severely limited due to both high run-time performance overhead and low detection coverage. This paper presents TypeSan, a practical type-confusion detector which provides both low run-time overhead and high detection coverage. Despite improving the coverage of state-of-the-art techniques, TypeSan significantly reduces the type-confusion detection overhead compared to other solutions. TypeSan relies on an efficient per-object metadata storage service based on a compact memory shadowing scheme. Our scheme treats all the memory objects (i.e., globals, stack, heap) uniformly to eliminate extra checks on the fast path and relies on a variable compression ratio to minimize run-time performance and memory overhead. Our experimental results confirm that TypeSan is practical, even when explicitly checking almost all the relevant typecasts in a given C++ program. Compared to the state of the art, TypeSan yields orders of magnitude higher coverage at 4–10 times lower performance overhead on SPEC and 2 times on Firefox. As a result, our solution offers superior protection and is suitable for deployment in production software. Moreover, our highly efficient metadata storage back-end is potentially useful for other defenses that require memory object tracking.