Visible to the public Biblio

Filters: Author is Regazzoni, Francesco  [Clear All Filters]
Khalid, Ayesha, Oder, Tobias, Valencia, Felipe, O' Neill, Maire, Güneysu, Tim, Regazzoni, Francesco.  2018.  Physical Protection of Lattice-Based Cryptography: Challenges and Solutions. Proceedings of the 2018 on Great Lakes Symposium on VLSI. :365–370.

The impending realization of scalable quantum computers will have a significant impact on today's security infrastructure. With the advent of powerful quantum computers public key cryptographic schemes will become vulnerable to Shor's quantum algorithm, undermining the security current communications systems. Post-quantum (or quantum-resistant) cryptography is an active research area, endeavoring to develop novel and quantum resistant public key cryptography. Amongst the various classes of quantum-resistant cryptography schemes, lattice-based cryptography is emerging as one of the most viable options. Its efficient implementation on software and on commodity hardware has already been shown to compete and even excel the performance of current classical security public-key schemes. This work discusses the next step in terms of their practical deployment, i.e., addressing the physical security of lattice-based cryptographic implementations. We survey the state-of-the-art in terms of side channel attacks (SCA), both invasive and passive attacks, and proposed countermeasures. Although the weaknesses exposed have led to countermeasures for these schemes, the cost, practicality and effectiveness of these on multiple implementation platforms, however, remains under-studied.

O'Neill, Maire, O'Sullivan, Elizabeth, McWilliams, Gavin, Saarinen, Markku-Juhani, Moore, Ciara, Khalid, Ayesha, Howe, James, del Pino, Rafael, Abdalla, Michel, Regazzoni, Francesco et al..  2016.  Secure Architectures of Future Emerging Cryptography SAFEcrypto. Proceedings of the ACM International Conference on Computing Frontiers. :315–322.

Funded under the European Union's Horizon 2020 research and innovation programme, SAFEcrypto will provide a new generation of practical, robust and physically secure post-quantum cryptographic solutions that ensure long-term security for future ICT systems, services and applications. The project will focus on the remarkably versatile field of Lattice-based cryptography as the source of computational hardness, and will deliver optimised public key security primitives for digital signatures and authentication, as well identity based encryption (IBE) and attribute based encryption (ABE). This will involve algorithmic and design optimisations, and implementations of lattice-based cryptographic schemes addressing cost, energy consumption, performance and physical robustness. As the National Institute of Standards and Technology (NIST) prepares for the transition to a post-quantum cryptographic suite B, urging organisations that build systems and infrastructures that require long-term security to consider this transition in architectural designs; the SAFEcrypto project will provide Proof-of-concept demonstrators of schemes for three practical real-world case studies with long-term security requirements, in the application areas of satellite communications, network security and cloud. The goal is to affirm Lattice-based cryptography as an effective replacement for traditional number-theoretic public-key cryptography, by demonstrating that it can address the needs of resource-constrained embedded applications, such as mobile and battery-operated devices, and of real-time high performance applications for cloud and network management infrastructures.

Bellon, Sebastien, Favi, Claudio, Malek, Miroslaw, Macchetti, Marco, Regazzoni, Francesco.  2016.  Evaluating the Impact of Environmental Factors on Physically Unclonable Functions (Abstract Only). Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. :279–279.

Fabrication process introduces some inherent variability to the attributes of transistors (in particular length, widths, oxide thickness). As a result, every chip is physically unique. Physical uniqueness of microelectronics components can be used for multiple security applications. Physically Unclonable Functions (PUFs) are built to extract the physical uniqueness of microelectronics components and make it usable for secure applications. However, the microelectronics components used by PUFs designs suffer from external, environmental variations that impact the PUF behavior. Variations of temperature gradients during manufacturing can bias the PUF responses. Variations of temperature or thermal noise during PUF operation change the behavior of the circuit, and can introduce errors in PUF responses. Detailed knowledge of the behavior of PUFs operating over various environmental factors is needed to reliably extract and demonstrate uniqueness of the chips. In this work, we present a detailed and exhaustive analysis of the behavior of two PUF designs, a ring oscillator PUF and a timing path violation PUF. We have implemented both PUFs using FPGA fabricated by Xilinx, and analyzed their behavior while varying temperature and supply voltage. Our experiments quantify the robustness of each design, demonstrate their sensitivity to temperature and show the impact which supply voltage has on the uniqueness of the analyzed PUFs.