Visible to the public Biblio

Filters: Author is Oprea, Alina  [Clear All Filters]
Conference Paper
Alrwais, Sumayah, Yuan, Kan, Alowaisheq, Eihal, Liao, Xiaojing, Oprea, Alina, Wang, XiaoFeng, Li, Zhou.  2016.  Catching Predators at Watering Holes: Finding and Understanding Strategically Compromised Websites. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :153–166.

Unlike a random, run-of-the-mill website infection, in a strategic web attack, the adversary carefully chooses the target frequently visited by an organization or a group of individuals to compromise, for the purpose of gaining a step closer to the organization or collecting information from the group. This type of attacks, called "watering hole", have been increasingly utilized by APT actors to get into the internal networks of big companies and government agencies or monitor politically oriented groups. With its importance, little has been done so far to understand how the attack works, not to mention any concrete step to counter this threat. In this paper, we report our first step toward better understanding this emerging threat, through systematically discovering and analyzing new watering hole instances and attack campaigns. This was made possible by a carefully designed methodology, which repeatedly monitors a large number potential watering hole targets to detect unusual changes that could be indicative of strategic compromises. Running this system on the HTTP traffic generated from visits to 61K websites for over 5 years, we are able to discover and confirm 17 watering holes and 6 campaigns never reported before. Given so far there are merely 29 watering holes reported by blogs and technical reports, the findings we made contribute to the research on this attack vector, by adding 59% more attack instances and information about how they work to the public knowledge. Analyzing the new watering holes allows us to gain deeper understanding of these attacks, such as repeated compromises of political websites, their long lifetimes, unique evasion strategy (leveraging other compromised sites to serve attack payloads) and new exploit techniques (no malware delivery, web only information gathering). Also, our study brings to light interesting new observations, including the discovery of a recent JSONP attack on an NGO website that has been widely reported and apparently forced the attack to stop.

Liu, Chang, Li, Bo, Vorobeychik, Yevgeniy, Oprea, Alina.  2017.  Robust Linear Regression Against Training Data Poisoning. Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. :91–102.
The effectiveness of supervised learning techniques has made them ubiquitous in research and practice. In high-dimensional settings, supervised learning commonly relies on dimensionality reduction to improve performance and identify the most important factors in predicting outcomes. However, the economic importance of learning has made it a natural target for adversarial manipulation of training data, which we term poisoning attacks. Prior approaches to dealing with robust supervised learning rely on strong assumptions about the nature of the feature matrix, such as feature independence and sub-Gaussian noise with low variance. We propose an integrated method for robust regression that relaxes these assumptions, assuming only that the feature matrix can be well approximated by a low-rank matrix. Our techniques integrate improved robust low-rank matrix approximation and robust principle component regression, and yield strong performance guarantees. Moreover, we experimentally show that our methods significantly outperform state of the art both in running time and prediction error.