Visible to the public Biblio

Filters: Author is Herrmann, Dominik  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Mueller, Tobias, Klotzsche, Daniel, Herrmann, Dominik, Federrath, Hannes.  2019.  Dangers and Prevalence of Unprotected Web Fonts. 2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). :1—5.

Most Web sites rely on resources hosted by third parties such as CDNs. Third parties may be compromised or coerced into misbehaving, e.g. delivering a malicious script or stylesheet. Unexpected changes to resources hosted by third parties can be detected with the Subresource Integrity (SRI) mechanism. The focus of SRI is on scripts and stylesheets. Web fonts cannot be secured with that mechanism under all circumstances. The first contribution of this paper is to evaluates the potential for attacks using malicious fonts. With an instrumented browser we find that (1) more than 95% of the top 50,000 Web sites of the Tranco top list rely on resources hosted by third parties and that (2) only a small fraction employs SRI. Moreover, we find that more than 60% of the sites in our sample use fonts hosted by third parties, most of which are being served by Google. The second contribution of the paper is a proof of concept of a malicious font as well as a tool for automatically generating such a font, which targets security-conscious users who are used to verifying cryptographic fingerprints. Software vendors publish such fingerprints along with their software packages to allow users to verify their integrity. Due to incomplete SRI support for Web fonts, a third party could force a browser to load our malicious font. The font targets a particular cryptographic fingerprint and renders it as a desired different fingerprint. This allows attackers to fool users into believing that they download a genuine software package although they are actually downloading a maliciously modified version. Finally, we propose countermeasures that could be deployed to protect the integrity of Web fonts.

Kirchler, Matthias, Herrmann, Dominik, Lindemann, Jens, Kloft, Marius.  2016.  Tracked Without a Trace: Linking Sessions of Users by Unsupervised Learning of Patterns in Their DNS Traffic. Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. :23–34.

Behavior-based tracking is an unobtrusive technique that allows observers to monitor user activities on the Internet over long periods of time – in spite of changing IP addresses. Previous work has employed supervised classifiers in order to link the sessions of individual users. However, classifiers need labeled training sessions, which are difficult to obtain for observers. In this paper we show how this limitation can be overcome with an unsupervised learning technique. We present a modified k-means algorithm and evaluate it on a realistic dataset that contains the Domain Name System (DNS) queries of 3,862 users. For this purpose, we simulate an observer that tries to track all users, and an Internet Service Provider that assigns a different IP address to every user on every day. The highest tracking accuracy is achieved within the subgroup of highly active users. Almost all sessions of 73% of the users in this subgroup can be linked over a period of 56 days. 19% of the highly active users can be traced completely, i.e., all their sessions are assigned to a single cluster. This fraction increases to 40% for shorter periods of seven days. As service providers may engage in behavior-based tracking to complement their existing profiling efforts, it constitutes a severe privacy threat for users of online services. Users can defend against behavior-based tracking by changing their IP address frequently, but this is cumbersome at the moment.