Visible to the public Biblio

Filters: Author is Amos, Brandon  [Clear All Filters]
Davies, Nigel, Taft, Nina, Satyanarayanan, Mahadev, Clinch, Sarah, Amos, Brandon.  2016.  Privacy Mediators: Helping IoT Cross the Chasm. Proceedings of the 17th International Workshop on Mobile Computing Systems and Applications. :39–44.

Unease over data privacy will retard consumer acceptance of IoT deployments. The primary source of discomfort is a lack of user control over raw data that is streamed directly from sensors to the cloud. This is a direct consequence of the over-centralization of today's cloud-based IoT hub designs. We propose a solution that interposes a locally-controlled software component called a privacy mediator on every raw sensor stream. Each mediator is in the same administrative domain as the sensors whose data is being collected, and dynamically enforces the current privacy policies of the owners of the sensors or mobile users within the domain. This solution necessitates a logical point of presence for mediators within the administrative boundaries of each organization. Such points of presence are provided by cloudlets, which are small locally-administered data centers at the edge of the Internet that can support code mobility. The use of cloudlet-based mediators aligns well with natural personal and organizational boundaries of trust and responsibility.

Wang, Junjue, Amos, Brandon, Das, Anupam, Pillai, Padmanabhan, Sadeh, Norman, Satyanarayanan, Mahadev.  2017.  A Scalable and Privacy-Aware IoT Service for Live Video Analytics. Proceedings of the 8th ACM on Multimedia Systems Conference. :38–49.

We present OpenFace, our new open-source face recognition system that approaches state-of-the-art accuracy. Integrating OpenFace with inter-frame tracking, we build RTFace, a mechanism for denaturing video streams that selectively blurs faces according to specified policies at full frame rates. This enables privacy management for live video analytics while providing a secure approach for handling retrospective policy exceptions. Finally, we present a scalable, privacy-aware architecture for large camera networks using RTFace.