Visible to the public Biblio

Filters: Author is Li, Ming  [Clear All Filters]
Yang, Lei, Zhang, Mengyuan, He, Shibo, Li, Ming, Zhang, Junshan.  2018.  Crowd-Empowered Privacy-Preserving Data Aggregation for Mobile Crowdsensing. Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing. :151–160.
We develop an auction framework for privacy-preserving data aggregation in mobile crowdsensing, where the platform plays the role as an auctioneer to recruit workers for a sensing task. In this framework, the workers are allowed to report privacy-preserving versions of their data to protect their data privacy; and the platform selects workers based on their sensing capabilities, which aims to address the drawbacks of game-theoretic models that cannot ensure the accuracy level of the aggregated result, due to the existence of multiple Nash Equilibria. Observe that in this auction based framework, there exists externalities among workers' data privacy, because the data privacy of each worker depends on both her injected noise and the total noise in the aggregated result that is intimately related to which workers are selected to fulfill the task. To achieve a desirable accuracy level of the data aggregation in a cost-effective manner, we explicitly characterize the externalities, i.e., the impact of the noise added by each worker on both the data privacy and the accuracy of the aggregated result. Further, we explore the problem structure, characterize the hidden monotonicity property of the problem, and determine the critical bid of workers, which makes it possible to design a truthful, individually rational and computationally efficient incentive mechanism. The proposed incentive mechanism can recruit a set of workers to approximately minimize the cost of purchasing private sensing data from workers subject to the accuracy requirement of the aggregated result. We validate the proposed scheme through theoretical analysis as well as extensive simulations.
Li, Ming, Hawrylak, Peter, Hale, John.  2019.  Concurrency Strategies for Attack Graph Generation. 2019 2nd International Conference on Data Intelligence and Security (ICDIS). :174-179.

The network attack graph is a powerful tool for analyzing network security, but the generation of a large-scale graph is non-trivial. The main challenge is from the explosion of network state space, which greatly increases time and storage costs. In this paper, three parallel algorithms are proposed to generate scalable attack graphs. An OpenMP-based programming implementation is used to test their performance. Compared with the serial algorithm, the best performance from the proposed algorithms provides a 10X speedup.

Ghose, Nirnimesh, Lazos, Loukas, Li, Ming.  2018.  Secure Device Bootstrapping Without Secrets Resistant to Signal Manipulation Attacks. 2018 IEEE Symposium on Security and Privacy (SP). :819-835.
In this paper, we address the fundamental problem of securely bootstrapping a group of wireless devices to a hub, when none of the devices share prior associations (secrets) with the hub or between them. This scenario aligns with the secure deployment of body area networks, IoT, medical devices, industrial automation sensors, autonomous vehicles, and others. We develop VERSE, a physical-layer group message integrity verification primitive that effectively detects advanced wireless signal manipulations that can be used to launch man-in-the-middle (MitM) attacks over wireless. Without using shared secrets to establish authenticated channels, such attacks are notoriously difficult to thwart and can undermine the authentication and key establishment processes. VERSE exploits the existence of multiple devices to verify the integrity of the messages exchanged within the group. We then use VERSE to build a bootstrapping protocol, which securely introduces new devices to the network. Compared to the state-of-the-art, VERSE achieves in-band message integrity verification during secure pairing using only the RF modality without relying on out-of-band channels or extensive human involvement. It guarantees security even when the adversary is capable of fully controlling the wireless channel by annihilating and injecting wireless signals. We study the limits of such advanced wireless attacks and prove that the introduction of multiple legitimate devices can be leveraged to increase the security of the pairing process. We validate our claims via theoretical analysis and extensive experimentations on the USRP platform. We further discuss various implementation aspects such as the effect of time synchronization between devices and the effects of multipath and interference. Note that the elimination of shared secrets, default passwords, and public key infrastructures effectively addresses the related key management challenges when these are considered at scale.
Leontiadis, Iraklis, Li, Ming.  2018.  Storage Efficient Substring Searchable Symmetric Encryption. Proceedings of the 6th International Workshop on Security in Cloud Computing. :3–13.

We address the problem of substring searchable encryption. A single user produces a big stream of data and later on wants to learn the positions in the string that some patterns occur. Although current techniques exploit auxiliary data structures to achieve efficient substring search on the server side, the cost at the user side may be prohibitive. We revisit the work of substring searchable encryption in order to reduce the storage cost of auxiliary data structures. Our solution entails a suffix array based index design, which allows optimal storage cost \$O(n)\$ with small hidden factor at the size of the string n. Moreover, we implemented our scheme and the state of the art protocol $\backslash$textbackslashciteChase to demonstrate the performance advantage of our solution with precise benchmark results.

Yang, Xinli, Li, Ming, Zhao, ShiLin.  2017.  Facial Expression Recognition Algorithm Based on CNN and LBP Feature Fusion. Proceedings of the 2017 International Conference on Robotics and Artificial Intelligence. :33–38.

When a complex scene such as rotation within a plane is encountered, the recognition rate of facial expressions will decrease much. A facial expression recognition algorithm based on CNN and LBP feature fusion is proposed in this paper. Firstly, according to the problem of the lack of feature expression ability of CNN in the process of expression recognition, a CNN model was designed. The model is composed of structural units that have two successive convolutional layers followed by a pool layer, which can improve the expressive ability of CNN. Then, the designed CNN model was used to extract the facial expression features, and local binary pattern (LBP) features with rotation invariance were fused. To a certain extent, it makes up for the lack of CNN sensitivity to in-plane rotation changes. The experimental results show that the proposed method improves the expression recognition rate under the condition of plane rotation to a certain extent and has better robustness.

Qiu, Shuo, Wang, Boyang, Li, Ming, Victors, Jesse, Liu, Jiqiang, Shi, Yanfeng, Wang, Wei.  2016.  Fast, Private and Verifiable: Server-aided Approximate Similarity Computation over Large-Scale Datasets. Proceedings of the 4th ACM International Workshop on Security in Cloud Computing. :29–36.

Computing similarity, especially Jaccard Similarity, between two datasets is a fundamental building block in big data analytics, and extensive applications including genome matching, plagiarism detection, social networking, etc. The increasing user privacy concerns over the release of has sensitive data have made it desirable and necessary for two users to evaluate Jaccard Similarity over their datasets in a privacy-preserving manner. In this paper, we propose two efficient and secure protocols to compute the Jaccard Similarity of two users' private sets with the help of an unfully-trusted server. Specifically, in order to boost the efficiency, we leverage Minhashing algorithm on encrypted data, where the output of our protocols is guaranteed to be a close approximation of the exact value. In both protocols, only an approximate similarity result is leaked to the server and users. The first protocol is secure against a semi-honest server, while the second protocol, with a novel consistency-check mechanism, further achieves result verifiability against a malicious server who cheats in the executions. Experimental results show that our first protocol computes an approximate Jaccard Similarity of two billion-element sets within only 6 minutes (under 256-bit security in parallel mode). To the best of our knowledge, our consistency-check mechanism represents the very first work to realize an efficient verification particularly on approximate similarity computation.