Visible to the public Biblio

Filters: Author is Cheung, Shing-Chi  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Wu, Rongxin, Xiao, Xiao, Cheung, Shing-Chi, Zhang, Hongyu, Zhang, Charles.  2016.  Casper: An Efficient Approach to Call Trace Collection. Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. :678–690.

Call traces, i.e., sequences of function calls and returns, are fundamental to a wide range of program analyses such as bug reproduction, fault diagnosis, performance analysis, and many others. The conventional approach to collect call traces that instruments each function call and return site incurs large space and time overhead. Our approach aims at reducing the recording overheads by instrumenting only a small amount of call sites while keeping the capability of recovering the full trace. We propose a call trace model and a logged call trace model based on an LL(1) grammar, which enables us to define the criteria of a feasible solution to call trace collection. Based on the two models, we prove that to collect call traces with minimal instrumentation is an NP-hard problem. We then propose an efficient approach to obtaining a suboptimal solution. We implemented our approach as a tool Casper and evaluated it using the DaCapo benchmark suite. The experiment results show that our approach causes significantly lower runtime (and space) overhead than two state-of-the-arts approaches.

Liu, Yepang, Xu, Chang, Cheung, Shing-Chi, Terragni, Valerio.  2016.  Understanding and Detecting Wake Lock Misuses for Android Applications. Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. :396–409.

Wake locks are widely used in Android apps to protect critical computations from being disrupted by device sleeping. Inappropriate use of wake locks often seriously impacts user experience. However, little is known on how wake locks are used in real-world Android apps and the impact of their misuses. To bridge the gap, we conducted a large-scale empirical study on 44,736 commercial and 31 open-source Android apps. By automated program analysis and manual investigation, we observed (1) common program points where wake locks are acquired and released, (2) 13 types of critical computational tasks that are often protected by wake locks, and (3) eight patterns of wake lock misuses that commonly cause functional and non-functional issues, only three of which had been studied by existing work. Based on our findings, we designed a static analysis technique, Elite, to detect two most common patterns of wake lock misuses. Our experiments on real-world subjects showed that Elite is effective and can outperform two state-of-the-art techniques.