Visible to the public Biblio

Filters: Author is Ji, Shouling  [Clear All Filters]
Chen, Jing, Yao, Shixiong, Yuan, Quan, He, Kun, Ji, Shouling, Du, Ruiying.  2018.  CertChain: Public and Efficient Certificate Audit Based on Blockchain for TLS Connections. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :2060-2068.

In recent years, real-world attacks against PKI take place frequently. For example, malicious domains' certificates issued by compromised CAs are widespread, and revoked certificates are still trusted by clients. In spite of a lot of research to improve the security of SSL/TLS connections, there are still some problems unsolved. On one hand, although log-based schemes provided certificate audit service to quickly detect CAs' misbehavior, the security and data consistency of log servers are ignored. On the other hand, revoked certificates checking is neglected due to the incomplete, insecure and inefficient certificate revocation mechanisms. Further, existing revoked certificates checking schemes are centralized which would bring safety bottlenecks. In this paper, we propose a blockchain-based public and efficient audit scheme for TLS connections, which is called Certchain. Specially, we propose a dependability-rank based consensus protocol in our blockchain system and a new data structure to support certificate forward traceability. Furthermore, we present a method that utilizes dual counting bloom filter (DCBF) with eliminating false positives to achieve economic space and efficient query for certificate revocation checking. The security analysis and experimental results demonstrate that CertChain is suitable in practice with moderate overhead.

Zhao, Binbin, Weng, Haiqin, Ji, Shouling, Chen, Jianhai, Wang, Ting, He, Qinming, Beyah, Reheem.  2018.  Towards Evaluating the Security of Real-World Deployed Image CAPTCHAs. Proceedings of the 11th ACM Workshop on Artificial Intelligence and Security. :85-96.
Nowadays, image captchas are being widely used across the Internet to defend against abusive programs. However, the ever-advancing capabilities of computer vision techniques are gradually diminishing the security of image captchas; yet, little is known thus far about the vulnerability of image captchas deployed in real-world settings. In this paper, we conduct the first systematic study on the security of image captchas in the wild. We classify the currently popular image captchas into three categories: selection-, slide- and click-based captchas. We propose three effective and generic attacks, each against one of these categories. We evaluate our attacks against 10 real-world popular image captchas, including those from,, and Furthermore, we compare our attacks with 9 online image recognition services and human labors from 8 underground captcha-solving services. Our studies show that: (1) all of those popular image captchas are vulnerable to our attacks; (2) our attacks significantly outperform the state-of-the-arts in almost all the scenarios; and (3) our attacks achieve effectiveness comparable to human labors but with much higher efficiency. Based on our evaluation, we identify the design flaws of those popular schemes, the best practices, and the design principles towards more secure captchas.
Wang, Ningfei, Ji, Shouling, Wang, Ting.  2018.  Integration of Static and Dynamic Code Stylometry Analysis for Programmer De-Anonymization. Proceedings of the 11th ACM Workshop on Artificial Intelligence and Security. :74–84.

De-anonymizing the authors of anonymous code (i.e., code stylometry) entails significant privacy and security implications. Most existing code stylometry methods solely rely on static (e.g., lexical, layout, and syntactic) features extracted from source code, while neglecting its key difference from regular text – it is executable! In this paper, we present Sundae, a novel code de-anonymization framework that integrates both static and dynamic stylometry analysis. Compared with the existing solutions, Sundae departs in significant ways: (i) it requires much less number of static, hand-crafted features; (ii) it requires much less labeled data for training; and (iii) it can be readily extended to new programmers once their stylometry information becomes available Through extensive evaluation on benchmark datasets, we demonstrate that Sundae delivers strong empirical performance. For example, under the setting of 229 programmers and 9 problems, it outperforms the state-of-art method by a margin of 45.65% on Python code de-anonymization. The empirical results highlight the integration of static and dynamic analysis as a promising direction for code stylometry research.

Ji, Shouling, Li, Weiqing, Srivatsa, Mudhakar, He, Jing Selena, Beyah, Raheem.  2016.  General Graph Data De-Anonymization: From Mobility Traces to Social Networks. ACM Trans. Inf. Syst. Secur.. 18:12:1–12:29.

When people utilize social applications and services, their privacy suffers a potential serious threat. In this article, we present a novel, robust, and effective de-anonymization attack to mobility trace data and social data. First, we design a Unified Similarity (US) measurement, which takes account of local and global structural characteristics of data, information obtained from auxiliary data, and knowledge inherited from ongoing de-anonymization results. By analyzing the measurement on real datasets, we find that some data can potentially be de-anonymized accurately and the other can be de-anonymized in a coarse granularity. Utilizing this property, we present a US-based De-Anonymization (DA) framework, which iteratively de-anonymizes data with accuracy guarantee. Then, to de-anonymize large-scale data without knowledge of the overlap size between the anonymized data and the auxiliary data, we generalize DA to an Adaptive De-Anonymization (ADA) framework. By smartly working on two core matching subgraphs, ADA achieves high de-anonymization accuracy and reduces computational overhead. Finally, we examine the presented de-anonymization attack on three well-known mobility traces: St Andrews, Infocom06, and Smallblue, and three social datasets: ArnetMiner, Google+, and Facebook. The experimental results demonstrate that the presented de-anonymization framework is very effective and robust to noise. The source code and employed datasets are now publicly available at SecGraph [2015].