Visible to the public Biblio

Filters: Author is Partho, Asif  [Clear All Filters]
Conference Paper
Rahman, Akond, Pradhan, Priysha, Partho, Asif, Williams, Laurie.  2017.  Predicting Android Application Security and Privacy Risk with Static Code Metrics. Proceedings of the 4th International Conference on Mobile Software Engineering and Systems. :149–153.

Android applications pose security and privacy risks for end-users. These risks are often quantified by performing dynamic analysis and permission analysis of the Android applications after release. Prediction of security and privacy risks associated with Android applications at early stages of application development, e.g. when the developer (s) are writing the code of the application, might help Android application developers in releasing applications to end-users that have less security and privacy risk. The goal of this paper is to aid Android application developers in assessing the security and privacy risk associated with Android applications by using static code metrics as predictors. In our paper, we consider security and privacy risk of Android application as how susceptible the application is to leaking private information of end-users and to releasing vulnerabilities. We investigate how effectively static code metrics that are extracted from the source code of Android applications, can be used to predict security and privacy risk of Android applications. We collected 21 static code metrics of 1,407 Android applications, and use the collected static code metrics to predict security and privacy risk of the applications. As the oracle of security and privacy risk, we used Androrisk, a tool that quantifies the amount of security and privacy risk of an Android application using analysis of Android permissions and dynamic analysis. To accomplish our goal, we used statistical learners such as, radial-based support vector machine (r-SVM). For r-SVM, we observe a precision of 0.83. Findings from our paper suggest that with proper selection of static code metrics, r-SVM can be used effectively to predict security and privacy risk of Android applications.

Rahman, Akond, Partho, Asif, Meder, David, Williams, Laurie.  2017.  Which Factors Influence Practitioners' Usage of Build Automation Tools? Proceedings of the 3rd International Workshop on Rapid Continuous Software Engineering. :20–26.

Even though build automation tools help to reduce errors and rapid releases of software changes, use of build automation tools is not widespread amongst software practitioners. Software practitioners perceive build automation tools as complex, which can hinder the adoption of these tools. How well founded such perception is, can be determined by systematic exploration of adoption factors that influence usage of build automation tools. The goal of this paper is to aid software practitioners in increasing their usage of build automation tools by identifying the adoption factors that influence usage of these tools. We conducted a survey to empirically identify the adoption factors that influence usage of build automation tools. We obtained survey responses from 268 software professionals who work at NestedApps, Red Hat, as well as contribute to open source software. We observe that adoption factors related to complexity do not have the strongest influence on usage of build automation tools. Instead, we observe compatibility-related adoption factors, such as adjustment with existing tools, and adjustment with practitioner's existing workflow, to have influence on usage of build automation tools with greater importance. Findings from our paper suggest that usage of build automation tools might increase if: build automation tools fit well with practitioners' existing workflow and tool usage; and usage of build automation tools are made more visible among practitioners' peers.