Visible to the public Biblio

Filters: Author is Costin, Andrei  [Clear All Filters]
Costin, Andrei.  2016.  Security of CCTV and Video Surveillance Systems: Threats, Vulnerabilities, Attacks, and Mitigations. Proceedings of the 6th International Workshop on Trustworthy Embedded Devices. :45–54.

Video surveillance, closed-circuit TV and IP-camera systems became virtually omnipresent and indispensable for many organizations, businesses, and users. Their main purpose is to provide physical security, increase safety, and prevent crime. They also became increasingly complex, comprising many communication means, embedded hardware and non-trivial firmware. However, most research to date focused mainly on the privacy aspects of such systems, and did not fully address their issues related to cyber-security in general, and visual layer (i.e., imagery semantics) attacks in particular. In this paper, we conduct a systematic review of existing and novel threats in video surveillance, closed-circuit TV and IP-camera systems based on publicly available data. The insights can then be used to better understand and identify the security and the privacy risks associated with the development, deployment and use of these systems. We study existing and novel threats, along with their existing or possible countermeasures, and summarize this knowledge into a comprehensive table that can be used in a practical way as a security checklist when assessing cyber-security level of existing or new CCTV designs and deployments. We also provide a set of recommendations and mitigations that can help improve the security and privacy levels provided by the hardware, the firmware, the network communications and the operation of video surveillance systems. We hope the findings in this paper will provide a valuable knowledge of the threat landscape that such systems are exposed to, as well as promote further research and widen the scope of this field beyond its current boundaries.

Costin, Andrei, Zarras, Apostolis, Francillon, Aurélien.  2016.  Automated Dynamic Firmware Analysis at Scale: A Case Study on Embedded Web Interfaces. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :437–448.

Embedded devices are becoming more widespread, interconnected, and web-enabled than ever. However, recent studies showed that embedded devices are far from being secure. Moreover, many embedded systems rely on web interfaces for user interaction or administration. Web security is still difficult and therefore the web interfaces of embedded systems represent a considerable attack surface. In this paper, we present the first fully automated framework that applies dynamic firmware analysis techniques to achieve, in a scalable manner, automated vulnerability discovery within embedded firmware images. We apply our framework to study the security of embedded web interfaces running in Commercial Off-The-Shelf (COTS) embedded devices, such as routers, DSL/cable modems, VoIP phones, IP/CCTV cameras. We introduce a methodology and implement a scalable framework for discovery of vulnerabilities in embedded web interfaces regardless of the devices' vendor, type, or architecture. To reach this goal, we perform full system emulation to achieve the execution of firmware images in a software-only environment, i.e., without involving any physical embedded devices. Then, we automatically analyze the web interfaces within the firmware using both static and dynamic analysis tools. We also present some interesting case-studies and discuss the main challenges associated with the dynamic analysis of firmware images and their web interfaces and network services. The observations we make in this paper shed light on an important aspect of embedded devices which was not previously studied at a large scale.