Visible to the public Biblio

Filters: Author is Chehab, A.  [Clear All Filters]
2014
Salman, A., Elhajj, I.H., Chehab, A., Kayssi, A..  2014.  DAIDS: An Architecture for Modular Mobile IDS. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :328-333.

The popularity of mobile devices and the enormous number of third party mobile applications in the market have naturally lead to several vulnerabilities being identified and abused. This is coupled with the immaturity of intrusion detection system (IDS) technology targeting mobile devices. In this paper we propose a modular host-based IDS framework for mobile devices that uses behavior analysis to profile applications on the Android platform. Anomaly detection can then be used to categorize malicious behavior and alert users. The proposed system accommodates different detection algorithms, and is being tested at a major telecom operator in North America. This paper highlights the architecture, findings, and lessons learned.

Mukaddam, A., Elhajj, I., Kayssi, A., Chehab, A..  2014.  IP Spoofing Detection Using Modified Hop Count. Advanced Information Networking and Applications (AINA), 2014 IEEE 28th International Conference on. :512-516.

With the global widespread usage of the Internet, more and more cyber-attacks are being performed. Many of these attacks utilize IP address spoofing. This paper describes IP spoofing attacks and the proposed methods currently available to detect or prevent them. In addition, it presents a statistical analysis of the Hop Count parameter used in our proposed IP spoofing detection algorithm. We propose an algorithm, inspired by the Hop Count Filtering (HCF) technique, that changes the learning phase of HCF to include all the possible available Hop Count values. Compared to the original HCF method and its variants, our proposed method increases the true positive rate by at least 9% and consequently increases the overall accuracy of an intrusion detection system by at least 9%. Our proposed method performs in general better than HCF method and its variants.
 

2016
Hussein, A., Elhajj, I. H., Chehab, A., Kayssi, A..  2016.  SDN Security Plane: An Architecture for Resilient Security Services. 2016 IEEE International Conference on Cloud Engineering Workshop (IC2EW). :54–59.

Software Defined Networking (SDN) is the new promise towards an easily configured and remotely controlled network. Based on Centralized control, SDN technology has proved its positive impact on the world of network communications from different aspects. Security in SDN, as in traditional networks, is an essential feature that every communication system should possess. In this paper, we propose an SDN security design approach, which strikes a good balance between network performance and security features. We show how such an approach can be used to prevent DDoS attacks targeting either the controller or the different hosts in the network, and how to trace back the source of the attack. The solution lies in introducing a third plane, the security plane, in addition to the data plane, which is responsible for forwarding data packets between SDN switches, and parallel to the control plane, which is responsible for rule and data exchange between the switches and the SDN controller. The security plane is designed to exchange security-related data between a third party agent on the switch and a third party software module alongside the controller. Our evaluation shows the capability of the proposed system to enforce different levels of real-time user-defined security with low overhead and minimal configuration.

2017
Salman, O., Kayssi, A., Chehab, A., Elhajj, I..  2017.  Multi-Level Security for the 5G/IoT Ubiquitous Network. 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC). :188–193.

5G, the fifth generation of mobile communication networks, is considered as one of the main IoT enablers. Connecting billions of things, 5G/IoT will be dealing with trillions of GBytes of data. Securing such large amounts of data is a very challenging task. Collected data varies from simple temperature measurements to more critical transaction data. Thus, applying uniform security measures is a waste of resources (processing, memory, and network bandwidth). Alternatively, a multi-level security model needs to be applied according to the varying requirements. In this paper, we present a multi-level security scheme (BLP) applied originally in the information security domain. We review its application in the network domain, and propose a modified version of BLP for the 5G/IoT case. The proposed model is proven to be secure and compliant with the model rules.

Hussein, A., Elhajj, I. H., Chehab, A., Kayssi, A..  2017.  SDN VANETs in 5G: An architecture for resilient security services. 2017 Fourth International Conference on Software Defined Systems (SDS). :67–74.

Vehicular ad-Hoc Networks (VANETs) have been promoted as a key technology that can provide a wide variety of services such as traffic management, passenger safety, as well as travel convenience and comfort. VANETs are now proposed to be part of the upcoming Fifth Generation (5G) technology, integrated with Software Defined Networking (SDN), as key enabler of 5G. The technology of fog computing in 5G turned out to be an adequate solution for faster processing in delay sensitive application, such as VANETs, being a hybrid solution between fully centralized and fully distributed networks. In this paper, we propose a three-way integration between VANETs, SDN, and 5G for a resilient VANET security design approach, which strikes a good balance between network, mobility, performance and security features. We show how such an approach can secure VANETs from different types of attacks such as Distributed Denial of Service (DDoS) targeting either the controllers or the vehicles in the network, and how to trace back the source of the attack. Our evaluation shows the capability of the proposed system to enforce different levels of real-time user-defined security, while maintaining low overhead and minimal configuration.

2019
Hussein, A., Salman, O., Chehab, A., Elhajj, I., Kayssi, A..  2019.  Machine Learning for Network Resiliency and Consistency. 2019 Sixth International Conference on Software Defined Systems (SDS). :146–153.

Being able to describe a specific network as consistent is a large step towards resiliency. Next to the importance of security lies the necessity of consistency verification. Attackers are currently focusing on targeting small and crutial goals such as network configurations or flow tables. These types of attacks would defy the whole purpose of a security system when built on top of an inconsistent network. Advances in Artificial Intelligence (AI) are playing a key role in ensuring a fast responce to the large number of evolving threats. Software Defined Networking (SDN), being centralized by design, offers a global overview of the network. Robustness and adaptability are part of a package offered by programmable networking, which drove us to consider the integration between both AI and SDN. The general goal of our series is to achieve an Artificial Intelligence Resiliency System (ARS). The aim of this paper is to propose a new AI-based consistency verification system, which will be part of ARS in our future work. The comparison of different deep learning architectures shows that Convolutional Neural Networks (CNN) give the best results with an accuracy of 99.39% on our dataset and 96% on our consistency test scenario.