Visible to the public Biblio

Filters: Author is Juels, Ari  [Clear All Filters]
Zhang, Fan, Cecchetti, Ethan, Croman, Kyle, Juels, Ari, Shi, Elaine.  2016.  Town Crier: An Authenticated Data Feed for Smart Contracts. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :270–282.

Smart contracts are programs that execute autonomously on blockchains. Their key envisioned uses (e.g. financial instruments) require them to consume data from outside the blockchain (e.g. stock quotes). Trustworthy data feeds that support a broad range of data requests will thus be critical to smart contract ecosystems. We present an authenticated data feed system called Town Crier (TC). TC acts as a bridge between smart contracts and existing web sites, which are already commonly trusted for non-blockchain applications. It combines a blockchain front end with a trusted hardware back end to scrape HTTPS-enabled websites and serve source-authenticated data to relying smart contracts. TC also supports confidentiality. It enables private data requests with encrypted parameters. Additionally, in a generalization that executes smart-contract logic within TC, the system permits secure use of user credentials to scrape access-controlled online data sources. We describe TC's design principles and architecture and report on an implementation that uses Intel's recently introduced Software Guard Extensions (SGX) to furnish data to the Ethereum smart contract system. We formally model TC and define and prove its basic security properties in the Universal Composibility (UC) framework. Our results include definitions and techniques of general interest relating to resource consumption (Ethereum's "gas" fee system) and TCB minimization. We also report on experiments with three example applications. We plan to launch TC soon as an online public service.

Juels, Ari, Kosba, Ahmed, Shi, Elaine.  2016.  The Ring of Gyges: Investigating the Future of Criminal Smart Contracts. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :283–295.

Thanks to their anonymity (pseudonymity) and elimination of trusted intermediaries, cryptocurrencies such as Bitcoin have created or stimulated growth in many businesses and communities. Unfortunately, some of these are criminal, e.g., money laundering, illicit marketplaces, and ransomware. Next-generation cryptocurrencies such as Ethereum will include rich scripting languages in support of smart contracts, programs that autonomously intermediate transactions. In this paper, we explore the risk of smart contracts fueling new criminal ecosystems. Specifically, we show how what we call criminal smart contracts (CSCs) can facilitate leakage of confidential information, theft of cryptographic keys, and various real-world crimes (murder, arson, terrorism). We show that CSCs for leakage of secrets (a la Wikileaks) are efficiently realizable in existing scripting languages such as that in Ethereum. We show that CSCs for theft of cryptographic keys can be achieved using primitives, such as Succinct Non-interactive ARguments of Knowledge (SNARKs), that are already expressible in these languages and for which efficient supporting language extensions are anticipated. We show similarly that authenticated data feeds, an emerging feature of smart contract systems, can facilitate CSCs for real-world crimes (e.g., property crimes). Our results highlight the urgency of creating policy and technical safeguards against CSCs in order to realize the promise of smart contracts for beneficial goals.