Visible to the public Biblio

Filters: Keyword is Safety  [Clear All Filters]
Chen, G., Wang, D., Li, T., Zhang, C., Gu, M., Sun, J..  2018.  Scalable Verification Framework for C Program. 2018 25th Asia-Pacific Software Engineering Conference (APSEC). :129-138.

Software verification has been well applied in safety critical areas and has shown the ability to provide better quality assurance for modern software. However, as lines of code and complexity of software systems increase, the scalability of verification becomes a challenge. In this paper, we present an automatic software verification framework TSV to address the scalability issues: (i) the extended structural abstraction and property-guided program slicing to solve large-scale program verification problem, saving time and memory without losing accuracy; (ii) automatically select different verification methods according to the program and property context to improve the verification efficiency. For evaluation, we compare TSV's different configurations with existing C program verifiers based on open benchmarks. We found that TSV with auto-selection performs better than with bounded model checking only or with extended structural abstraction only. Compared to existing tools such as CMBC and CPAChecker, it acquires 10%-20% improvement of accuracy and 50%-90% improvement of memory consumption.

Arsalan, A., Rehman, R. A..  2018.  Prevention of Timing Attack in Software Defined Named Data Network with VANETs. 2018 International Conference on Frontiers of Information Technology (FIT). :247–252.
Software Defined Network (SDN) is getting popularity both from academic and industry. Lot of researches have been made to combine SDN with future Internet paradigms to manage and control networks efficiently. SDN provides better management and control in a network through decoupling of data and control plane. Named Data Networking (NDN) is a future Internet technique with aim to replace IPv4 addressing problems. In NDN, communication between different nodes done on the basis of content names rather than IP addresses. Vehicular Ad-hoc Network (VANET) is a subtype of MANET which is also considered as a hot area for future applications. Different vehicles communicate with each other to form a network known as VANET. Communication between VANET can be done in two ways (i) Vehicle to Vehicle (V2V) (ii) Vehicle to Infrastructure (V2I). Combination of SDN and NDN techniques in future Internet can solve lot of problems which were hard to answer by considering a single technique. Security in VANET is always challenging due to unstable topology of VANET. In this paper, we merge future Internet techniques and propose a new scheme to answer timing attack problem in VANETs named as Timing Attack Prevention (TAP) protocol. Proposed scheme is evaluated through simulations which shows the superiority of proposed protocol regarding detection and mitigation of attacker vehicles as compared to normal timing attack scenario in NDN based VANET.
Höfig, K., Klug, A..  2018.  SEnSE – An Architecture for a Safe and Secure Integration of Safety-Critical Embedded Systems. 2018 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM). :1–5.
Embedded systems that communicate with each other over the internet and build up a larger, loosely coupled (hardware) system with an unknown configuration at runtime is often referred to as a cyberphysical system. Many of these systems can become, due to its associated risks during their operation, safety critical. With increased complexity of such systems, the number of configurations can either be infinite or even unknown at design time. Hence, a certification at design time for such systems that documents a safe interaction for all possible configurations of all participants at runtime can become unfeasible. If such systems come together in a new configuration, a mechanism is required that can decide whether or not it is safe for them to interact. Such a mechanism can generally not be part of such systems for the sake of trust. Therefore, we present in the following sections the SEnSE device, short for Secure and Safe Embedded, that tackles these challenges and provides a secure and safe integration of safety-critical embedded systems.
Li, J. H., Schafer, D., Whelihan, D., Lassini, S., Evancich, N., Kwak, K. J., Vai, M., Whitman, H..  2018.  Designing Secure and Resilient Embedded Avionics Systems. 2018 IEEE Cybersecurity Development (SecDev). :139–139.
Over the past decade, the reliance on Unmanned Aerial Systems (UAS) to carry out critical missions has grown drastically. With an increased reliance on UAS as mission assets and the dependency of UAS on cyber resources, cyber security of UAS must be improved by adopting sound security principles and relevant technologies from the computing community. On the other hand, the traditional avionics community, being aware of the importance of cyber security, is looking at new architecture and designs that can accommodate both the traditional safety oriented principles as well as the cyber security principles and techniques. It is with the effective and timely convergence of these domains that a holistic approach and co-design can meet the unique requirements of modern systems and operations. In this paper, authors from both the cyber security and avionics domains describe our joint effort and insights obtained during the course of designing secure and resilient embedded avionics systems.
Hoeller, A., Toegl, R..  2018.  Trusted Platform Modules in Cyber-Physical Systems: On the Interference Between Security and Dependability. 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :136–144.
Cyber physical systems are the key innovation driver for many domains such as automotive, avionics, industrial process control, and factory automation. However, their interconnection potentially provides adversaries easy access to sensitive data, code, and configurations. If attackers gain control, material damage or even harm to people must be expected. To counteract data theft, system manipulation and cyber-attacks, security mechanisms must be embedded in the cyber physical system. Adding hardware security in the form of the standardized Trusted Platform Module (TPM) is a promising approach. At the same time, traditional dependability features such as safety, availability, and reliability have to be maintained. To determine the right balance between security and dependability it is essential to understand their interferences. This paper supports developers in identifying the implications of using TPMs on the dependability of their system.We highlight potential consequences of adding TPMs to cyber-physical systems by considering the resulting safety, reliability, and availability. Furthermore, we discuss the potential of enhancing the dependability of TPM services by applying traditional redundancy techniques.
Aniculaesei, Adina, Grieser, Jörg, Rausch, Andreas, Rehfeldt, Karina, Warnecke, Tim.  2018.  Towards a Holistic Software Systems Engineering Approach for Dependable Autonomous Systems. Proceedings of the 1st International Workshop on Software Engineering for AI in Autonomous Systems. :23-30.

Autonomous systems are gaining momentum in various application domains, such as autonomous vehicles, autonomous transport robotics and self-adaptation in smart homes. Product liability regulations impose high standards on manufacturers of such systems with respect to dependability (safety, security and privacy). Today's conventional engineering methods are not adequate for providing guarantees with respect to dependability requirements in a cost-efficient manner, e.g. road tests in the automotive industry sum up millions of miles before a system can be considered sufficiently safe. System engineers will no longer be able to test and respectively formally verify autonomous systems during development time in order to guarantee the dependability requirements in advance. In this vision paper, we introduce a new holistic software systems engineering approach for autonomous systems, which integrates development time methods as well as operation time techniques. With this approach, we aim to give the users a transparent view of the confidence level of the autonomous system under use with respect to the dependability requirements. We present already obtained results and point out research goals to be addressed in the future.

Mamun, A. Al, Mamun, M. Abdullah Al, Shikfa, A..  2018.  Challenges and Mitigation of Cyber Threat in Automated Vehicle: An Integrated Approach. 2018 International Conference of Electrical and Electronic Technologies for Automotive. :1–6.
The technological development of automated vehicles opens novel cybersecurity threats and risks for road safety. Increased connectivity often results in increased risks of a cyber-security attacks, which is one of the biggest challenges for the automotive industry that undergoes a profound transformation. State of the art studies evaluated potential attacks and recommended possible measures, from technical and organizational perspective to face these challenges. In this position paper, we review these techniques and methods and show that some of the different solutions complement each other while others overlap or are even incompatible or contradictory. Based on this gap analysis, we advocate for the need of a comprehensive framework that integrates technical and organizational mitigation measures to enhance the cybersecurity of automotive vehicles.
Lykou, G., Anagnostopoulou, A., Gritzalis, D..  2018.  Implementing Cyber-Security Measures in Airports to Improve Cyber-Resilience. 2018 Global Internet of Things Summit (GIoTS). :1–6.

Airports are at the forefront of technological innovation, mainly due to the fact that the number of air travel passengers is exponentially increasing every year. As a result, airports enhance infrastructure's intelligence and evolve as smart facilities to support growth, by offering a pleasurable travel experience, which plays a vital role in increasing revenue of aviation sector. New challenges are coming up, which aviation has to deal and adapt, such as the integration of Industrial IoT in airport facilities and the increased use of Bring Your Own Device from travelers and employees. Cybersecurity is becoming a key enabler for safety, which is paramount in the aviation context. Smart airports strive to provide optimal services in a reliable and sustainable manner, by working around the domains of growth, efficiency, safety andsecurity. This paper researches the implementation rate of cybersecurity measures and best practices to improve airports cyber resilience. With the aim to enhance operational practices anddevelop robust cybersecurity governance in smart airports, we analyze security gaps in different areas including technical, organizational practices and policies.

Han, K., Li, S., Wang, Z., Yang, X..  2018.  Actuator deception attack detection and estimation for a class of nonlinear systems. 2018 37th Chinese Control Conference (CCC). :5675–5680.
In this paper, an novel active safety monitoring system is constructed for a class of nonlinear discrete-time systems. The considered nonlinear system is subjected to unknown inputs, external disturbances, and possible unknown deception attacks, simultaneously. In order to secure the safety of control systems, an active attack estimator composed of state/output estimator, attack detector and attack/attacker action estimator is constructed to monitor the system running status. The analysis and synthesis of attack estimator is performed in the H∞performance optimization manner. The off-line calculation and on-line application of active attack estimator are summarized simultaneously. The effectiveness of the proposed results is finally verified by an numerical example.
Matta, R. de, Miller, T..  2018.  A Strategic Manufacturing Capacity and Supply Chain Network Design Contingency Planning Approach. 2018 IEEE Technology and Engineering Management Conference (TEMSCON). :1–6.
We develop a contingency planning methodology for how a firm would build a global supply chain network with reserve manufacturing capacity which can be strategically deployed by the firm in the event actual demand exceeds forecast. The contingency planning approach is comprised of: (1) a strategic network design model for finding the profit maximizing plant locations, manufacturing capacity and inventory investments, and production level and product distribution; and (2) a scenario planning and risk assessment scheme to analyze the costs and benefits of alternative levels of manufacturing capacity and inventory investments. We develop an efficient heuristic procedure to solve the model. We show numerically how a firm would use our approach to explore and weigh the potential upside benefits and downside risks of alternative strategies.
Kuk, Seungho, Kim, Hyogon, Park, Yongtae.  2017.  Detecting False Position Attack in Vehicular Communications Using Angular Check. Proceedings of the 2Nd ACM International Workshop on Smart, Autonomous, and Connected Vehicular Systems and Services. :25–29.

With Wireless Access in Vehicular Environment (WAVE) finalized for legal enforcement from 2020 after the recent move by the U.S. Government, data plausibility is still an unresolved security issue. In particular, an attacker may forge false position values in safety beacons in order to cause unsafe response from startled receiving vehicles. The data plausibility is a longstanding issue for which various approaches based on sensor fusion, behavior analysis and communication constraints have been proposed, but none of these completely solve the problem. This paper proposes an angle of arrival (AoA) based method to invalidate position forging adversaries such as roadside attackers. Built entirely on the WAVE framework, it can be used even when the traditional sensor fusion-based or behavior-based check is inapplicable. The proposed approach is a completely passive scheme that does not require more than an additional antenna that is strongly recommended for performance anyway.

Lebeck, K., Ruth, K., Kohno, T., Roesner, F..  2018.  Towards Security and Privacy for Multi-User Augmented Reality: Foundations with End Users. 2018 IEEE Symposium on Security and Privacy (SP). :392–408.

Immersive augmented reality (AR) technologies are becoming a reality. Prior works have identified security and privacy risks raised by these technologies, primarily considering individual users or AR devices. However, we make two key observations: (1) users will not always use AR in isolation, but also in ecosystems of other users, and (2) since immersive AR devices have only recently become available, the risks of AR have been largely hypothetical to date. To provide a foundation for understanding and addressing the security and privacy challenges of emerging AR technologies, grounded in the experiences of real users, we conduct a qualitative lab study with an immersive AR headset, the Microsoft HoloLens. We conduct our study in pairs - 22 participants across 11 pairs - wherein participants engage in paired and individual (but physically co-located) HoloLens activities. Through semi-structured interviews, we explore participants' security, privacy, and other concerns, raising key findings. For example, we find that despite the HoloLens's limitations, participants were easily immersed, treating virtual objects as real (e.g., stepping around them for fear of tripping). We also uncover numerous security, privacy, and safety concerns unique to AR (e.g., deceptive virtual objects misleading users about the real world), and a need for access control among users to manage shared physical spaces and virtual content embedded in those spaces. Our findings give us the opportunity to identify broader lessons and key challenges to inform the design of emerging single-and multi-user AR technologies.

Buttigieg, R., Farrugia, M., Meli, C..  2017.  Security issues in controller area networks in automobiles. 2017 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). :93–98.
Modern vehicles may contain a considerable number of ECUs (Electronic Control Units) which are connected through various means of communication, with the CAN (Controller Area Network) protocol being the most widely used. However, several vulnerabilities such as the lack of authentication and the lack of data encryption have been pointed out by several authors, which ultimately render vehicles unsafe to their users and surroundings. Moreover, the lack of security in modern automobiles has been studied and analyzed by other researchers as well as several reports about modern car hacking have (already) been published. The contribution of this work aimed to analyze and test the level of security and how resilient is the CAN protocol by taking a BMW E90 (3-series) instrument cluster as a sample for a proof of concept study. This investigation was carried out by building and developing a rogue device using cheap commercially available components while being connected to the same CAN-Bus as a man in the middle device in order to send spoofed messages to the instrument cluster.
Gaikwad, V. S., Gandle, K. S..  2017.  Ideal complexity cryptosystem with high privacy data service for cloud databases. 2017 1st International Conference on Intelligent Systems and Information Management (ICISIM). :267–270.

Data storage in cloud should come along with high safety and confidentiality. It is accountability of cloud service provider to guarantee the availability and security of client data. There exist various alternatives for storage services but confidentiality and complexity solutions for database as a service are still not satisfactory. Proposed system gives alternative solution for database as a service that integrates benefits of different services along with advance encryption techniques. It yields possibility of applying concurrency on encrypted data. This alternative provides supporting facility to connect dispersed clients with elimination of intermediate proxy by which simplicity can acquired. Performance of proposed system evaluated on basis of theoretical analyses.

Chowdhury, F. H., Shuvo, B., Islam, M. R., Ghani, T., Akash, S. A., Ahsan, R., Hassan, N. N..  2017.  Design, control amp;amp; performance analysis of secure you IoT based smart security system. 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.

The paper introduces a smart system developed with sensors that is useful for internal and external security. The system is useful for people living in houses, apartments, high officials, bank, and offices. The system is developed in two phases one for internal security like home another is external security like open areas, streets. The system is consist of a mobile application, capacitive sensing, smart routing these valuable features to ensure safety of life and wealth. This security system is wireless sensor based which is an effective alternative of cctv cameras and other available security systems. Efficiency of this system is developed after going through practical studies and prototyping. The end result explains the feasibility rate, positive impact factor, reliability of the system. More research is possible in future based on this system this research explains that.

Cheah, M., Bryans, J., Fowler, D. S., Shaikh, S. A..  2017.  Threat Intelligence for Bluetooth-Enabled Systems with Automotive Applications: An Empirical Study. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :36–43.

Modern vehicles are opening up, with wireless interfaces such as Bluetooth integrated in order to enable comfort and safety features. Furthermore a plethora of aftermarket devices introduce additional connectivity which contributes to the driving experience. This connectivity opens the vehicle to potentially malicious attacks, which could have negative consequences with regards to safety. In this paper, we survey vehicles with Bluetooth connectivity from a threat intelligence perspective to gain insight into conditions during real world driving. We do this in two ways: firstly, by examining Bluetooth implementation in vehicles and gathering information from inside the cabin, and secondly, using war-nibbling (general monitoring and scanning for nearby devices). We find that as the vehicle age decreases, the security (relatively speaking) of the Bluetooth implementation increases, but that there is still some technological lag with regards to Bluetooth implementation in vehicles. We also find that a large proportion of vehicles and aftermarket devices still use legacy pairing (and are therefore more insecure), and that these vehicles remain visible for sufficient time to mount an attack (assuming some premeditation and preparation). We demonstrate a real-world threat scenario as an example of the latter. Finally, we provide some recommendations on how the security risks we discover could be mitigated.

Salles-Loustau, G., Garcia, L., Sun, P., Dehnavi, M., Zonouz, S..  2017.  Power Grid Safety Control via Fine-Grained Multi-Persona Programmable Logic Controllers. 2017 IEEE International Conference on Smart Grid Communications (SmartGridComm). :283–288.

Trustworthy and safe operation of the power grid critical infrastructures relies on secure execution of low-level substation controller devices such as programmable logic controllers (PLCs). Currently, there are very few security protection solutions deployed on these devices to ensure provenance control: to execute controller code on the device that is developed by trusted parties and complies with safety/security policies that are defined by the code developer as well as the power grid operators. Resource-limited PLC controllers have been becoming increasingly popular among not only legitimate system operators, but also malicious adversaries such as the most recent Stuxnet and BlackEnergy malware that caused various damages such as unauthorized infrastructural safety and integrity violations. We present PLCtrust, a domain-specific solution that deploys virtual micro security-perimeters, so-called capsules, and the corresponding device-level runtime power system-safety policy enforcement dynamically. PLCtrust makes use of data taint analysis to monitor and control data flow among the capsules based on data owner-defined policies. PLCtrust provides the operators with a transparent and lightweight solution to address various safety-critical data protection requirements. PLCtrust also provides the legitimate third-party controller code developers with a taint-aware programming interface to develop applications in compliance with the dynamic power system safety/security policies. Our experimental results on real-world settings show that PLCtrust is transparent to the end-users while ensuring the power grid safety maintenance with minimal performance overhead.

Shin, S., Tuck, J., Solihin, Y..  2017.  Hiding the Long Latency of Persist Barriers Using Speculative Execution. 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA). :175–186.

Byte-addressable non-volatile memory technology is emerging as an alternative for DRAM for main memory. This new Non-Volatile Main Memory (NVMM) allows programmers to store important data in data structures in memory instead of serializing it to the file system, thereby providing a substantial performance boost. However, modern systems reorder memory operations and utilize volatile caches for better performance, making it difficult to ensure a consistent state in NVMM. Intel recently announced a new set of persistence instructions, clflushopt, clwb, and pcommit. These new instructions make it possible to implement fail-safe code on NVMM, but few workloads have been written or characterized using these new instructions. In this work, we describe how these instructions work and how they can be used to implement write-ahead logging based transactions. We implement several common data structures and kernels and evaluate the performance overhead incurred over traditional non-persistent implementations. In particular, we find that persistence instructions occur in clusters along with expensive fence operations, they have long latency, and they add a significant execution time overhead, on average by 20.3% over code with logging but without fence instructions to order persists. To deal with this overhead and alleviate the performance bottleneck, we propose to speculate past long latency persistency operations using checkpoint-based processing. Our speculative persistence architecture reduces the execution time overheads to only 3.6%.

Gu, P., Khatoun, R., Begriche, Y., Serhrouchni, A..  2017.  Support Vector Machine (SVM) Based Sybil Attack Detection in Vehicular Networks. 2017 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.

Vehicular networks have been drawing special atten- tion in recent years, due to its importance in enhancing driving experience and improving road safety in future smart city. In past few years, several security services, based on cryptography, PKI and pseudonymous, have been standardized by IEEE and ETSI. However, vehicular networks are still vulnerable to various attacks, especially Sybil attack. In this paper, a Support Vector Machine (SVM) based Sybil attack detection method is proposed. We present three SVM kernel functions based classifiers to distinguish the malicious nodes from benign ones via evaluating the variance in their Driving Pattern Matrices (DPMs). The effectiveness of our proposed solution is evaluated through extensive simulations based on SUMO simulator and MATLAB. The results show that the proposed detection method can achieve a high detection rate with low error rate even under a dynamic traffic environment.

Garip, M. T., Kim, P. H., Reiher, P., Gerla, M..  2017.  INTERLOC: An interference-aware RSSI-based localization and sybil attack detection mechanism for vehicular ad hoc networks. 2017 14th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–6.

Vehicular ad hoc networks (VANETs) are designed to provide traffic safety by exploiting the inter-vehicular communications. Vehicles build awareness of traffic in their surroundings using information broadcast by other vehicles, such as speed, location and heading, to proactively avoid collisions. The effectiveness of these VANET traffic safety applications is particularly dependent on the accuracy of the location information advertised by each vehicle. Therefore, traffic safety can be compromised when Sybil attackers maliciously advertise false locations or other inaccurate GPS readings are sent. The most effective way to detect a Sybil attack or correct the noise in the GPS readings is localizing vehicles based on the physical features of their transmission signals. The current localization techniques either are designed for networks where the nodes are immobile or suffer from inaccuracy in high-interference environments. In this paper, we present a RSSI-based localization technique that uses mobile nodes for localizing another mobile node and adjusts itself based on the heterogeneous interference levels in the environment. We show via simulation that our localization mechanism is more accurate than the other mechanisms and more resistant to environments with high interference and mobility.

Fraj, R. Ben, Beroulle, V., Fourty, N., Meddeb, A..  2017.  A Global Approach for the Improvement of UHF RFID Safety and Security. 2017 12th International Conference on Design Technology of Integrated Systems In Nanoscale Era (DTIS). :1–2.
Radio Frequency Identification (RFID) devices are widely used in many domains such as tracking, marking and management of goods, smart houses (IoT), supply chains, etc. However, there is a big number of challenges which must still be overcome to ensure RFID security and privacy. In addition, due to the low cost and low consumption power of UHF RFID tags, communications between tags and readers are not robust. In this paper, we present our approach to evaluate at the same time the security and the safety of UHF RFID systems in order to improve them. First, this approach allows validating UHF RFID systems by simulation of the system behavior in presence of faults in a real environment. Secondly, evaluating the system robustness and the security of the used protocols, this approach will enable us to propose the development of new more reliable and secure protocols. Finally, it leads us to develop and validate new low cost and secure tag hardware architectures.
Schulz, T., Golatowski, F., Timmermann, D..  2017.  Evaluation of a Formalized Encryption Library for Safety-Critical Embedded Systems. 2017 IEEE International Conference on Industrial Technology (ICIT). :1153–1158.

Complex safety-critical devices require dependable communication. Dependability includes confidentiality and integrity as much as safety. Encrypting gateways with demilitarized zones, Multiple Independent Levels of Security architectures and the infamous Air Gap are diverse integration patterns for safety-critical infrastructure. Though resource restricted embedded safety devices still lack simple, certifiable, and efficient cryptography implementations. Following the recommended formal methods approach for safety-critical devices, we have implemented proven cryptography algorithms in the qualified model based language Scade as the Safety Leveraged Implementation of Data Encryption (SLIDE) library. Optimization for the synchronous dataflow language is discussed in the paper. The implementation for public-key based encryption and authentication is evaluated for real-world performance. The feasibility is shown by execution time benchmarks on an industrial safety microcontroller platform running a train control safety application.

Zhang, H., Lin, Y., Xiao, J..  2017.  An innovative analying method for the scale of distribution system security region. 2017 IEEE Power Energy Society General Meeting. :1–5.

Distribution system security region (DSSR) has been widely used to analyze the distribution system operation security. This paper innovatively defines the scale of DSSR, namely the number of boundary constraints and variables of all operational constraints, analyzes and puts forward the corresponding evaluation method. Firstly, the influence of the number of security boundary constraints and variables on the scale of DSSR is analyzed. The factors that mainly influence the scale are found, such as the number of transformers, feeders, as well as sectionalizing switches, and feeder contacts modes between transformers. Secondly, a matrix representing the relations among transformers in distribution system is defined to reflect the characteristics of network's structure, while an algorithm of the scale of DSSR based on transformers connection relationship matrix is proposed, which avoids the trouble of listing security region constraints. Finally, the proposed method is applied in a test system to confirm the effectiveness of the concepts and methods. It provides the necessary foundation for DSSR theory as well as safety analysis.

Filip, G., Meng, X., Burnett, G., Harvey, C..  2017.  Human factors considerations for cooperative positioning using positioning, navigational and sensor feedback to calibrate trust in CAVs. 2017 Forum on Cooperative Positioning and Service (CPGPS \#65289;. :134–139.

Given the complexities involved in the sensing, navigational and positioning environment on board automated vehicles we conduct an exploratory survey and identify factors capable of influencing the users' trust in such system. After the analysis of the survey data, the Situational Awareness of the Vehicle (SAV) emerges as an important factor capable of influencing the trust of the users. We follow up on that by conducting semi-structured interviews with 12 experts in the CAV field, focusing on the importance of the SAV, on the factors that are most important when talking about it as well as the need to keep the users informed regarding its status. We conclude that in the context of Connected and Automated Vehicles (CAVs), the importance of the SAV can now be expanded beyond its technical necessity of making vehicles function to a human factors area: calibrating users' trust.

Kokaly, S..  2017.  Managing Assurance Cases in Model Based Software Systems. 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C). :453–456.

Software has emerged as a significant part of many domains, including financial service platforms, social networks and vehicle control. Standards organizations have responded to this by creating regulations to address issues such as safety and privacy. In this context, compliance of software with standards has emerged as a key issue. For software development organizations, compliance is a complex and costly goal to achieve and is often accomplished by producing so-called assurance cases, which demonstrate that the system indeed satisfies the property imposed by a standard (e.g., safety, privacy, security). As systems and standards undergo evolution for a variety of reasons, maintaining assurance cases multiplies the effort. In this work, we propose to exploit the connection between the field of model management and the problem of compliance management and propose methods that use model management techniques to address compliance scenarios such as assurance case evolution and reuse. For validation, we ground our approaches on the automotive domain and the ISO 26262 standard for functional safety of road vehicles.