Visible to the public Biblio

Found 150 results

Filters: Keyword is Electronic mail  [Clear All Filters]
2021-05-20
Razaque, Abdul, Frej, Mohamed Ben Haj, Sabyrov, Dauren, Shaikhyn, Aidana, Amsaad, Fathi, Oun, Ahmed.  2020.  Detection of Phishing Websites using Machine Learning. 2020 IEEE Cloud Summit. :103—107.

Phishing sends malicious links or attachments through emails that can perform various functions, including capturing the victim's login credentials or account information. These emails harm the victims, cause money loss, and identity theft. In this paper, we contribute to solving the phishing problem by developing an extension for the Google Chrome web browser. In the development of this feature, we used JavaScript PL. To be able to identify and prevent the fishing attack, a combination of Blacklisting and semantic analysis methods was used. Furthermore, a database for phishing sites is generated, and the text, links, images, and other data on-site are analyzed for pattern recognition. Finally, our proposed solution was tested and compared to existing approaches. The results validate that our proposed method is capable of handling the phishing issue substantially.

2021-05-13
Feng, Liu, Jie, Yang, Deli, Kong, Jiayin, Qi.  2020.  A Secure Multi-party Computation Protocol Combines Pederson Commitment with Schnorr Signature for Blockchain. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :57—63.

Blockchain is being pursued by a growing number of people with its characteristics of openness, transparency, and decentralization. At the same time, how to secure privacy protection in such an open and transparent ledger is an urgent issue to be solved for deep study. Therefore, this paper proposes a protocol based on Secure multi-party computation, which can merge and sign different transaction messages under the anonymous condition by using Pedersen commitment and Schnorr Signature. Through the rationality proof and security analysis, this paper demonstrates the private transaction is safe under the semi-honest model. And its computational cost is less than the equivalent multi-signature model. The research has made some innovative contributions to the privacy computing theory.

Peck, Sarah Marie, Khan, Mohammad Maifi Hasan, Fahim, Md Abdullah Al, Coman, Emil N, Jensen, Theodore, Albayram, Yusuf.  2020.  Who Would Bob Blame? Factors in Blame Attribution in Cyberattacks Among the Non-Adopting Population in the Context of 2FA 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :778–789.
This study focuses on identifying the factors contributing to a sense of personal responsibility that could improve understanding of insecure cybersecurity behavior and guide research toward more effective messaging targeting non-adopting populations. Towards that, we ran a 2(account type) x2(usage scenario) x2(message type) between-group study with 237 United States adult participants on Amazon MTurk, and investigated how the non-adopting population allocates blame, and under what circumstances they blame the end user among the parties who hold responsibility: the software companies holding data, the attackers exposing data, and others. We find users primarily hold service providers accountable for breaches but they feel the same companies should not enforce stronger security policies on users. Results indicate that people do hold end users accountable for their behavior in the event of a breach, especially when the users' behavior affects others. Implications of our findings in risk communication is discussed in the paper.
2021-04-27
Tolsdorf, J., Iacono, L. Lo.  2020.  Vision: Shred If Insecure – Persuasive Message Design as a Lesson and Alternative to Previous Approaches to Usable Secure Email Interfaces. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :172–177.
Despite the advances in research on usable secure email, the majority of mail user agents found in practice still violates best practices in UI design and uses ineffective and inhomogeneous design strategies to communicate and let users control the security status of an email message.We propose a novel interaction and design concept that we refer to as persuasive message design. Our approach is derived from heuristics and a systematic meta-study of existing HCI literature on email management, usable secure email and phishing research. Concluding on this body of knowledge we propose the design of interfaces that suppress weak cues and instead manipulate the display of emails according to their technical security level. Persuasive message design addresses several shortcomings of current secure email user interfaces and provides a consistent user experience that can be deployed even by email providers.
2021-03-30
Gillen, R. E., Carter, J. M., Craig, C., Johnson, J. A., Scott, S. L..  2020.  Assessing Anomaly-Based Intrusion Detection Configurations for Industrial Control Systems. 2020 IEEE 21st International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). :360—366.

To reduce cost and ease maintenance, industrial control systems (ICS) have adopted Ethernetbased interconnections that integrate operational technology (OT) systems with information technology (IT) networks. This integration has made these critical systems vulnerable to attack. Security solutions tailored to ICS environments are an active area of research. Anomalybased network intrusion detection systems are well-suited for these environments. Often these systems must be optimized for their specific environment. In prior work, we introduced a method for assessing the impact of various anomaly-based network IDS settings on security. This paper reviews the experimental outcomes when we applied our method to a full-scale ICS test bed using actual attacks. Our method provides new and valuable data to operators enabling more informed decisions about IDS configurations.

2021-03-29
Distler, V., Lallemand, C., Koenig, V..  2020.  Making Encryption Feel Secure: Investigating how Descriptions of Encryption Impact Perceived Security. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :220—229.

When communication about security to end users is ineffective, people frequently misinterpret the protection offered by a system. The discrepancy between the security users perceive a system to have and the actual system state can lead to potentially risky behaviors. It is thus crucial to understand how security perceptions are shaped by interface elements such as text-based descriptions of encryption. This article addresses the question of how encryption should be described to non-experts in a way that enhances perceived security. We tested the following within-subject variables in an online experiment (N=309): a) how to best word encryption, b) whether encryption should be described with a focus on the process or outcome, or both c) whether the objective of encryption should be mentioned d) when mentioning the objective of encryption, how to best describe it e) whether a hash should be displayed to the user. We also investigated the role of context (between subjects). The verbs "encrypt" and "secure" performed comparatively well at enhancing perceived security. Overall, participants stated that they felt more secure not knowing about the objective of encryption. When it is necessary to state the objective, positive wording of the objective of encryption worked best. We discuss implications and why using these results to design for perceived lack of security might be of interest as well. This leads us to discuss ethical concerns, and we give guidelines for the design of user interfaces where encryption should be communicated to end users.

2021-03-09
THIGA, M. M..  2020.  Increasing Participation and Security in Student Elections through Online Voting: The Case of Kabarak University. 2020 IST-Africa Conference (IST-Africa). :1—7.

Electronic voting systems have enhanced efficiency in student elections management in universities, supporting such elections to become less expensive, logistically simple, with higher accuracy levels as compared to manually conducted elections. However, e-voting systems that are confined to campus hall voting inhibits access to eligible voters who are away from campus. This study examined the challenges of lack of wide access and impersonation of voter in the student elections of 2018 in Kabarak University. The main objective of this study was therefore to upgrade the offline electronic voting system through developing a secure online voting system and deploying the system for use in the 2019 student elections at Kabarak University. The resultant system and development process employed demonstrate the applicability of a secure online voting not only in the higher education context, but also in other democracies where infusion of online access and authentication in the voting processes is a requisite.

Sallal, M., Owenson, G., Adda, M..  2020.  Evaluation of Security and Performance of Master Node Protocol in the Bitcoin Peer-to-Peer Network. 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1—3.

The mechanism of peers randomly choosing logical neighbors without any knowledge about underlying physical topology can cause a delay overhead in information propagation which makes the system vulnerable to double spend attacks. This paper introduces a proximity-aware extensions to the current Bitcoin protocol, named Master Node Based Clustering (MNBC). The ultimate purpose of the proposed protocol is to improve the information propagation delay in the Bitcoin network.

2021-03-01
Golagha, M., Pretschner, A., Briand, L. C..  2020.  Can We Predict the Quality of Spectrum-based Fault Localization? 2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST). :4–15.
Fault localization and repair are time-consuming and tedious. There is a significant and growing need for automated techniques to support such tasks. Despite significant progress in this area, existing fault localization techniques are not widely applied in practice yet and their effectiveness varies greatly from case to case. Existing work suggests new algorithms and ideas as well as adjustments to the test suites to improve the effectiveness of automated fault localization. However, important questions remain open: Why is the effectiveness of these techniques so unpredictable? What are the factors that influence the effectiveness of fault localization? Can we accurately predict fault localization effectiveness? In this paper, we try to answer these questions by collecting 70 static, dynamic, test suite, and fault-related metrics that we hypothesize are related to effectiveness. Our analysis shows that a combination of only a few static, dynamic, and test metrics enables the construction of a prediction model with excellent discrimination power between levels of effectiveness (eight metrics yielding an AUC of .86; fifteen metrics yielding an AUC of.88). The model hence yields a practically useful confidence factor that can be used to assess the potential effectiveness of fault localization. Given that the metrics are the most influential metrics explaining the effectiveness of fault localization, they can also be used as a guide for corrective actions on code and test suites leading to more effective fault localization.
2021-02-15
Reyad, O., Karar, M., Hamed, K..  2020.  Random Bit Generator Mechanism Based on Elliptic Curves and Secure Hash Function. 2019 International Conference on Advances in the Emerging Computing Technologies (AECT). :1–6.
Pseudorandom bit generators (PRBG) can be designed to take the advantage of some hard number theoretic problems such as the discrete logarithm problem (DLP). Such type of generators will have good randomness and unpredictability properties as it is so difficult to find an easy solution to the regarding mathematical dilemma. Hash functions in turn play a remarkable role in many cryptographic tasks to achieve various security strengths. In this paper, a pseudorandom bit generator mechanism that is based mainly on the elliptic curve discrete logarithm problem (ECDLP) and hash derivation function is proposed. The cryptographic hash functions are used in consuming applications that require various security strengths. In a good hash function, finding whatever the input that can be mapped to any pre-specified output is considered computationally infeasible. The obtained pseudorandom bits are tested with NIST statistical tests and it also could fulfill the up-to-date standards. Moreover, a 256 × 256 grayscale images are encrypted with the obtained pseudorandom bits following by necessary analysis of the cipher images for security prove.
2021-02-03
Adil, M., Khan, R., Ghani, M. A. Nawaz Ul.  2020.  Preventive Techniques of Phishing Attacks in Networks. 2020 3rd International Conference on Advancements in Computational Sciences (ICACS). :1—8.

Internet is the most widely used technology in the current era of information technology and it is embedded in daily life activities. Due to its extensive use in everyday life, it has many applications such as social media (Face book, WhatsApp, messenger etc.,) and other online applications such as online businesses, e-counseling, advertisement on websites, e-banking, e-hunting websites, e-doctor appointment and e-doctor opinion. The above mentioned applications of internet technology makes things very easy and accessible for human being in limited time, however, this technology is vulnerable to various security threats. A vital and severe threat associated with this technology or a particular application is “Phishing attack” which is used by attacker to usurp the network security. Phishing attacks includes fake E-mails, fake websites, fake applications which are used to steal their credentials or usurp their security. In this paper, a detailed overview of various phishing attacks, specifically their background knowledge, and solutions proposed in literature to address these issues using various techniques such as anti-phishing, honey pots and firewalls etc. Moreover, installation of intrusion detection systems (IDS) and intrusion detection and prevention system (IPS) in the networks to allow the authentic traffic in an operational network. In this work, we have conducted end use awareness campaign to educate and train the employs in order to minimize the occurrence probability of these attacks. The result analysis observed for this survey was quite excellent by means of its effectiveness to address the aforementioned issues.

2021-01-28
Segoro, M. B., Putro, P. A. Wibowo.  2020.  Implementation of Two Factor Authentication (2FA) and Hybrid Encryption to Reduce the Impact of Account Theft on Android-Based Instant Messaging (IM) Applications. 2020 International Workshop on Big Data and Information Security (IWBIS). :115—120.

Instant messaging is an application that is widely used to communicate. Based on the wearesocial.com report, three of the five most used social media platforms are chat or instant messaging. Instant messaging was chosen for communication because it has security features in log in using a One Time Password (OTP) code, end-to-end encryption, and even two-factor authentication. However, instant messaging applications still have a vulnerability to account theft. This account theft occurs when the user loses his cellphone. Account theft can happen when a cellphone is locked or not. As a result of this account theft, thieves can read confidential messages and send fake news on behalf of the victim. In this research, instant messaging application security will be applied using hybrid encryption and two-factor authentication, which are made interrelated. Both methods will be implemented in 2 implementation designs. The implementation design is securing login and securing sending and receiving messages. For login security, QR Code implementation is sent via email. In sending and receiving messages, the message decryption process will be carried out when the user is authenticated using a fingerprint. Hybrid encryption as message security uses RSA 2048 and AES 128. Of the ten attempts to steal accounts that have been conducted, it is shown that the implementation design is proven to reduce the impact of account theft.

Pham, L. H., Albanese, M., Chadha, R., Chiang, C.-Y. J., Venkatesan, S., Kamhoua, C., Leslie, N..  2020.  A Quantitative Framework to Model Reconnaissance by Stealthy Attackers and Support Deception-Based Defenses. :1—9.

In recent years, persistent cyber adversaries have developed increasingly sophisticated techniques to evade detection. Once adversaries have established a foothold within the target network, using seemingly-limited passive reconnaissance techniques, they can develop significant network reconnaissance capabilities. Cyber deception has been recognized as a critical capability to defend against such adversaries, but, without an accurate model of the adversary's reconnaissance behavior, current approaches are ineffective against advanced adversaries. To address this gap, we propose a novel model to capture how advanced, stealthy adversaries acquire knowledge about the target network and establish and expand their foothold within the system. This model quantifies the cost and reward, from the adversary's perspective, of compromising and maintaining control over target nodes. We evaluate our model through simulations in the CyberVAN testbed, and indicate how it can guide the development and deployment of future defensive capabilities, including high-interaction honeypots, so as to influence the behavior of adversaries and steer them away from critical resources.

2021-01-25
Yoon, S., Cho, J.-H., Kim, D. S., Moore, T. J., Free-Nelson, F., Lim, H..  2020.  Attack Graph-Based Moving Target Defense in Software-Defined Networks. IEEE Transactions on Network and Service Management. 17:1653–1668.
Moving target defense (MTD) has emerged as a proactive defense mechanism aiming to thwart a potential attacker. The key underlying idea of MTD is to increase uncertainty and confusion for attackers by changing the attack surface (i.e., system or network configurations) that can invalidate the intelligence collected by the attackers and interrupt attack execution; ultimately leading to attack failure. Recently, the significant advance of software-defined networking (SDN) technology has enabled several complex system operations to be highly flexible and robust; particularly in terms of programmability and controllability with the help of SDN controllers. Accordingly, many security operations have utilized this capability to be optimally deployed in a complex network using the SDN functionalities. In this paper, by leveraging the advanced SDN technology, we developed an attack graph-based MTD technique that shuffles a host's network configurations (e.g., MAC/IP/port addresses) based on its criticality, which is highly exploitable by attackers when the host is on the attack path(s). To this end, we developed a hierarchical attack graph model that provides a network's vulnerability and network topology, which can be utilized for the MTD shuffling decisions in selecting highly exploitable hosts in a given network, and determining the frequency of shuffling the hosts' network configurations. The MTD shuffling with a high priority on more exploitable, critical hosts contributes to providing adaptive, proactive, and affordable defense services aiming to minimize attack success probability with minimum MTD cost. We validated the out performance of the proposed MTD in attack success probability and MTD cost via both simulation and real SDN testbed experiments.
Zhang, Z., Zhang, Q., Liu, T., Pang, Z., Cui, B., Jin, S., Liu, K..  2020.  Data-driven Stealthy Actuator Attack against Cyber-Physical Systems. 2020 39th Chinese Control Conference (CCC). :4395–4399.
This paper studies the data-driven stealthy actuator attack against cyber-physical systems. The objective of the attacker is to add a certain bias to the output while keeping the detection rate of the χ2 detector less than a certain value. With the historical input and output data, the parameters of the system are estimated and the attack signal is the solution of a convex optimization problem constructed with the estimated parameters. The extension to the case of arbitrary detectors is also discussed. A numerical example is given to verify the effectiveness of the attack.
2021-01-18
Naik, N., Jenkins, P., Savage, N., Yang, L., Boongoen, T., Iam-On, N..  2020.  Fuzzy-Import Hashing: A Malware Analysis Approach. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–8.
Malware has remained a consistent threat since its emergence, growing into a plethora of types and in large numbers. In recent years, numerous new malware variants have enabled the identification of new attack surfaces and vectors, and have become a major challenge to security experts, driving the enhancement and development of new malware analysis techniques to contain the contagion. One of the preliminary steps of malware analysis is to remove the abundance of counterfeit malware samples from the large collection of suspicious samples. This process assists in the management of man and machine resources effectively in the analysis of both unknown and likely malware samples. Hashing techniques are one of the fastest and efficient techniques for performing this preliminary analysis such as fuzzy hashing and import hashing. However, both hashing methods have their limitations and they may not be effective on their own, instead the combination of two distinctive methods may assist in improving the detection accuracy and overall performance of the analysis. This paper proposes a Fuzzy-Import hashing technique which is the combination of fuzzy hashing and import hashing to improve the detection accuracy and overall performance of malware analysis. This proposed Fuzzy-Import hashing offers several benefits which are demonstrated through the experimentation performed on the collected malware samples and compared against stand-alone techniques of fuzzy hashing and import hashing.
2021-01-15
Korolev, D., Frolov, A., Babalova, I..  2020.  Classification of Websites Based on the Content and Features of Sites in Onion Space. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1680—1683.
This paper describes a method for classifying onion sites. According to the results of the research, the most spread model of site in onion space is built. To create such a model, a specially trained neural network is used. The classification of neural network is based on five different categories such as using authentication system, corporate email, readable URL, feedback and type of onion-site. The statistics of the most spread types of websites in Dark Net are given.
2021-01-11
Zhao, F., Skums, P., Zelikovsky, A., Sevigny, E. L., Swahn, M. H., Strasser, S. M., Huang, Y., Wu, Y..  2020.  Computational Approaches to Detect Illicit Drug Ads and Find Vendor Communities Within Social Media Platforms. IEEE/ACM Transactions on Computational Biology and Bioinformatics. :1–1.
The opioid abuse epidemic represents a major public health threat to global populations. The role social media may play in facilitating illicit drug trade is largely unknown due to limited research. However, it is known that social media use among adults in the US is widespread, there is vast capability for online promotion of illegal drugs with delayed or limited deterrence of such messaging, and further, general commercial sale applications provide safeguards for transactions; however, they do not discriminate between legal and illegal sale transactions. These characteristics of the social media environment present challenges to surveillance which is needed for advancing knowledge of online drug markets and the role they play in the drug abuse and overdose deaths. In this paper, we present a computational framework developed to automatically detect illicit drug ads and communities of vendors.The SVM- and CNNbased methods for detecting illicit drug ads, and a matrix factorization based method for discovering overlapping communities have been extensively validated on the large dataset collected from Google+, Flickr and Tumblr. Pilot test results demonstrate that our computational methods can effectively identify illicit drug ads and detect vendor-community with accuracy. These methods hold promise to advance scientific knowledge surrounding the role social media may play in perpetuating the drug abuse epidemic.
2020-12-28
Meng, C., Zhou, L..  2020.  Big Data Encryption Technology Based on ASCII And Application On Credit Supervision. 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). :79—82.

Big Data Platform provides business units with data platforms, data products and data services by integrating all data to fully analyze and exploit the intrinsic value of data. Data accessed by big data platforms may include many users' privacy and sensitive information, such as the user's hotel stay history, user payment information, etc., which is at risk of leakage. This paper first analyzes the risks of data leakage, then introduces in detail the theoretical basis and common methods of data desensitization technology, and finally puts forward a set of effective market subject credit supervision application based on asccii, which is committed to solving the problems of insufficient breadth and depth of data utilization for enterprises involved, the problems of lagging regulatory laws and standards, the problems of separating credit construction and market supervision business, and the credit constraints of data governance.

2020-11-20
Alzahrani, A., Johnson, C., Altamimi, S..  2018.  Information security policy compliance: Investigating the role of intrinsic motivation towards policy compliance in the organization. 2018 4th International Conference on Information Management (ICIM). :125—132.
Recent behavioral research in information security has focused on increasing employees' motivation to enhance the security performance in an organization. This empirical study investigated employees' information security policy (ISP) compliance intentions using self-determination theory (SDT). Relevant hypotheses were developed to test the proposed research model. Data obtained via a survey (N=3D407) from a Fortune 600 organization in Saudi Arabia provides empirical support for the model. The results confirmed that autonomy, competence and the concept of relatedness all positively affect employees' intentions to comply. The variable 'perceived value congruence' had a negative effect on ISP compliance intentions, and the perceived legitimacy construct did not affect employees' intentions. In general, the findings of this study suggest that SDT has value in research into employees' ISP compliance intentions.
2020-11-09
Ankam, D., Bouguila, N..  2018.  Compositional Data Analysis with PLS-DA and Security Applications. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :338–345.
In Compositional data, the relative proportions of the components contain important relevant information. In such case, Euclidian distance fails to capture variation when considered within data science models and approaches such as partial least squares discriminant analysis (PLS-DA). Indeed, the Euclidean distance assumes implicitly that the data is normally distributed which is not the case of compositional vectors. Aitchison transformation has been considered as a standard in compositional data analysis. In this paper, we consider two other transformation methods, Isometric log ratio (ILR) transformation and data-based power (alpha) transformation, before feeding the data to PLS-DA algorithm for classification [1]. In order to investigate the merits of both methods, we apply them in two challenging information system security applications namely spam filtering and intrusion detection.
Göktaş, E., Kollenda, B., Koppe, P., Bosman, E., Portokalidis, G., Holz, T., Bos, H., Giuffrida, C..  2018.  Position-Independent Code Reuse: On the Effectiveness of ASLR in the Absence of Information Disclosure. 2018 IEEE European Symposium on Security and Privacy (EuroS P). :227–242.
Address-space layout randomization is a wellestablished defense against code-reuse attacks. However, it can be completely bypassed by just-in-time code-reuse attacks that rely on information disclosure of code addresses via memory or side-channel exposure. To address this fundamental weakness, much recent research has focused on detecting and mitigating information disclosure. The assumption being that if we perfect such techniques, we will not only maintain layout secrecy but also stop code reuse. In this paper, we demonstrate that an advanced attacker can mount practical code-reuse attacks even in the complete absence of information disclosure. To this end, we present Position-Independent Code-Reuse Attacks, a new class of codereuse attacks relying on the relative rather than absolute location of code gadgets in memory. By means of memory massaging, the attacker first makes the victim program generate a rudimentary ROP payload (for instance, containing code pointers that target instructions "close" to relevant gadgets). Afterwards, the addresses in this payload are patched with small offsets via relative memory writes. To establish the practicality of such attacks, we present multiple Position-Independent ROP exploits against real-world software. After showing that we can bypass ASLR in current systems without requiring information disclosures, we evaluate the impact of our technique on other defenses, such as fine-grained ASLR, multi-variant execution, execute-only memory and re-randomization. We conclude by discussing potential mitigations.
2020-10-12
Flores, Pedro, Farid, Munsif, Samara, Khalid.  2019.  Assessing E-Security Behavior among Students in Higher Education. 2019 Sixth HCT Information Technology Trends (ITT). :253–258.
This study was conducted in order to assess the E-security behavior of students in a large higher educational institutions in the United Arab Emirates (UAE). Specifically, it sought to determine the current state of students' E-security behavior in the aspects of malware, password usage, data handling, phishing, social engineering, and online scam. An E- Security Behavior Survey Instrument (EBSI) was used to determine the status of security behavior of the participants in doing their computing activities. To complement the survey tool, focus group discussions were conducted to elicit specific experiences and insights of the participants relative to E-security. The results of the study shows that the overall E-security behavior among students in higher education in the United Arab Emirates (UAE) is moderately favorable. Specifically, the investigation reveals that the students favorably behave when it comes to phishing, social engineering, and online scam. However, they uncertainly behave on malware issues, password usage, and data handling.
Sánchez, Marco, Torres, Jenny, Zambrano, Patricio, Flores, Pamela.  2018.  FraudFind: Financial fraud detection by analyzing human behavior. 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC). :281–286.
Financial fraud is commonly represented by the use of illegal practices where they can intervene from senior managers until payroll employees, becoming a crime punishable by law. There are many techniques developed to analyze, detect and prevent this behavior, being the most important the fraud triangle theory associated with the classic financial audit model. In order to perform this research, a survey of the related works in the existing literature was carried out, with the purpose of establishing our own framework. In this context, this paper presents FraudFind, a conceptual framework that allows to identify and outline a group of people inside an banking organization who commit fraud, supported by the fraud triangle theory. FraudFind works in the approach of continuous audit that will be in charge of collecting information of agents installed in user's equipment. It is based on semantic techniques applied through the collection of phrases typed by the users under study for later being transferred to a repository for later analysis. This proposal encourages to contribute with the field of cybersecurity, in the reduction of cases of financial fraud.
Alissa, Khalid Adnan, Alshehri, Hanan Abdullah, Dahdouh, Shahad Abdulaziz, Alsubaie, Basstaa Mohammad, Alghamdi, Afnan Mohammed, Alharby, Abdulrahman, Almubairik, Norah Ahmed.  2018.  An Instrument to Measure Human Behavior Toward Cyber Security Policies. 2018 21st Saudi Computer Society National Computer Conference (NCC). :1–6.
Human is the weakest link in information security. Even with strong cyber security policies an organization can still be hacked because of a human error. Even if people are aware of the policies and their importance they might not behave accordingly. This shows to the importance of studying and measuring human behavior toward cyber security policies. This paper introduces a new instrument that can be used to measure human behavior toward cybersecurity policies through creative measures. The goal is to gather data about human behaviors toward cybersecurity policies in natural environment. This method of gathering information allows people to behave normally and don't feel the need to answer perfectly. The paper illustrates all the previous work related to the subject, summarizing previous work in order to improve what have been previously done. The methodology seeks on measuring behavior based on specific measures. These measures are the password, email, identity, sensitive data, and physical/resource security. Each measure has a number of policies used to measure behavior. These policies were selected among several policies based on literature from the same field and the opinion of experts in the field. These question that went through several rounds of check were used to build the proposed-instrument. This instrument then shall be used by researchers to collect data and perform the required analysis. This paper discusses the behavior pattern in a detail and concise manner. The paper demonstrates that it is posable to measure behavior if the right we questions were asked in the right way.