Visible to the public Biblio

Found 241 results

Filters: Keyword is Support vector machines  [Clear All Filters]
2021-09-21
Chen, Chin-Wei, Su, Ching-Hung, Lee, Kun-Wei, Bair, Ping-Hao.  2020.  Malware Family Classification Using Active Learning by Learning. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :590–595.
In the past few years, the malware industry has been thriving. Malware variants among the same malware family shared similar behavioural patterns or signatures reflecting their purpose. We propose an approach that combines support vector machine (SVM) classifiers and active learning by learning (ALBL) techniques to deal with insufficient labeled data in terms of the malware classification tasks. The proposed approach is evaluated with the malware family dataset from Microsoft Malware Classification Challenge (BIG 2015) on Kaggle. The results show that ALBL techniques can effectively boost the performance of our machine learning models and improve the quality of labeled samples.
Lin, Kuang-Yao, Huang, Wei-Ren.  2020.  Using Federated Learning on Malware Classification. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :585–589.
In recent years, everything has been more and more systematic, and it would generate many cyber security issues. One of the most important of these is the malware. Modern malware has switched to a high-growth phase. According to the AV-TEST Institute showed that there are over 350,000 new malicious programs (malware) and potentially unwanted applications (PUA) be registered every day. This threat was presented and discussed in the present paper. In addition, we also considered data privacy by using federated learning. Feature extraction can be performed based on malware. The proposed method achieves very high accuracy ($\approx$0.9167) on the dataset provided by VirusTotal.
Zhe, Wang, Wei, Cheng, Chunlin, Li.  2020.  DoS attack detection model of smart grid based on machine learning method. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :735–738.
In recent years, smart grid has gradually become the common development trend of the world's power industry, and its security issues are increasingly valued by researchers. Smart grids have applied technologies such as physical control, data encryption, and authentication to improve their security, but there is still a lack of timely and effective detection methods to prevent the grid from being threatened by malicious intrusions. Aiming at this problem, a model based on machine learning to detect smart grid DoS attacks has been proposed. The model first collects network data, secondly selects features and uses PCA for data dimensionality reduction, and finally uses SVM algorithm for abnormality detection. By testing the SVM, Decision Tree and Naive Bayesian Network classification algorithms on the KDD99 dataset, it is found that the SVM model works best.
Dalal, Kushal Rashmikant.  2020.  Analysing the Role of Supervised and Unsupervised Machine Learning in IoT. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :75–79.
To harness the value of data generated from IoT, there is a crucial requirement of new mechanisms. Machine learning (ML) is among the most suitable paradigms of computation which embeds strong intelligence within IoT devices. Various ML techniques are being widely utilised for improving network security in IoT. These techniques include reinforcement learning, semi-supervised learning, supervised learning, and unsupervised learning. This report aims to critically analyse the role played by supervised and unsupervised ML for the enhancement of IoT security.
Zhao, Quanling, Sun, Jiawei, Ren, Hongjia, Sun, Guodong.  2020.  Machine-Learning Based TCP Security Action Prediction. 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :1329–1333.
With the continuous growth of Internet technology and the increasingly broadening applications of The Internet, network security incidents as well as cyber-attacks are also showing a growing trend. Consequently, computer network security is becoming increasingly important. TCP firewall is a computer network security system, and it allows or denies the transmission of data according to specific rules for providing security for the computer network. Traditional firewalls rely on network administrators to set security rules for them, and network administrators sometimes need to choose to allow and deny packets to keep computer networks secure. However, due to the huge amount of data on the Internet, network administrators have a huge task. Therefore, it is particularly important to solve this problem by using the machine learning method of computer technology. This study aims to predict TCP security action based on the TCP transmission characteristics dataset provided by UCI machine learning repository by implementing machine learning models such as neural network, support vector machine (SVM), AdaBoost, and Logistic regression. Processes including evaluating various models and interpretability analysis. By utilizing the idea of ensemble-learning, the final result has an accuracy score of over 98%.
2021-09-08
Ali, Jehad, Roh, Byeong-hee, Lee, Byungkyu, Oh, Jimyung, Adil, Muhammad.  2020.  A Machine Learning Framework for Prevention of Software-Defined Networking Controller from DDoS Attacks and Dimensionality Reduction of Big Data. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :515–519.
The controller is an indispensable entity in software-defined networking (SDN), as it maintains a global view of the underlying network. However, if the controller fails to respond to the network due to a distributed denial of service (DDoS) attacks. Then, the attacker takes charge of the whole network via launching a spoof controller and can also modify the flow tables. Hence, faster, and accurate detection of DDoS attacks against the controller will make the SDN reliable and secure. Moreover, the Internet traffic is drastically increasing due to unprecedented growth of connected devices. Consequently, the processing of large number of requests cause a performance bottleneck regarding SDN controller. In this paper, we propose a hierarchical control plane SDN architecture for multi-domain communication that uses a statistical method called principal component analysis (PCA) to reduce the dimensionality of the big data traffic and the support vector machine (SVM) classifier is employed to detect a DDoS attack. SVM has high accuracy and less false positive rate while the PCA filters attribute drastically. Consequently, the performance of classification and accuracy is improved while the false positive rate is reduced.
2021-09-07
Abisoye, Opeyemi Aderiike, Shadrach Akanji, Oluwatobi, Abisoye, Blessing Olatunde, Awotunde, Joseph.  2020.  Slow Hypertext Transfer Protocol Mitigation Model in Software Defined Networks. 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI). :1–5.
Distributed Denial of Service (DDoS) attacks have been one of the persistent forms of attacks on information technology infrastructure connected to a public network due to the ease of access to DDoS attack tools. Researchers have been able to develop several techniques to curb volumetric DDoS attacks which overwhelms the target with large number of request packets. However, compared to volumetric DDoS, low amount of research has been executed on mitigating slow DDoS. Data mining approaches and various Artificial Intelligence techniques have been proved by researchers to be effective for reduce DDoS attacks. This paper provides the scholarly community with slow DDoS attack detection techniques using Genetic Algorithm and Support Vector Machine aimed at mitigating slow DDoS attack in a Software-Defined Networking (SDN) environment simulated in GNS3. Genetic algorithm was employed to select the features which indicates the presence of an attack and also determine the appropriate regularization parameter, C, and gamma parameter for the Support Vector Machine classifier. Results obtained shows that the classifier had detection accuracy, Area Under Receiver Operating Curve (AUC), true positive rate, false positive rate and false negative rate of 99.89%, 99.89%, 99.95%, 0.18%, and 0.05% respectively. Also, the algorithm for subsequent implementation of the selective adaptive bubble burst mitigation mechanism was presented.
Atasever, Süreyya, Öz\c celık, İlker, Sa\u giro\u glu, \c Seref.  2020.  An Overview of Machine Learning Based Approaches in DDoS Detection. 2020 28th Signal Processing and Communications Applications Conference (SIU). :1–4.
Many detection approaches have been proposed to address growing threat of Distributed Denial of Service (DDoS) attacks on the Internet. The attack detection is the initial step in most of the mitigation systems. This study examined the methods used to detect DDoS attacks with the focus on learning based approaches. These approaches were compared based on their efficiency, operating load and scalability. Finally, it is discussed in details.
2021-08-02
S, Kanthimathi, Prathuri, Jhansi Rani.  2020.  Classification of Misbehaving nodes in MANETS using Machine Learning Techniques. 2020 2nd PhD Colloquium on Ethically Driven Innovation and Technology for Society (PhD EDITS). :1–2.
Classification of Misbehaving Nodes in wireless mobile adhoc networks (MANET) by applying machine learning techniques is an attempt to enhance security by detecting the presence of malicious nodes. MANETs are prone to many security vulnerabilities due to its significant features. The paper compares two machine learning techniques namely Support Vector Machine (SVM) and Back Propagation Neural Network (BPNN) and finds out the best technique to detect the misbehaving nodes. This paper is simulated with an on-demand routing protocol in NS2.35 and the results can be compared using parameters like packet Delivery Ratio (PDR), End-To-End delay, Average Throughput.
2021-07-08
Lu, Yujun, Gao, BoYu, Long, Jinyi, Weng, Jian.  2020.  Hand Motion with Eyes-free Interaction for Authentication in Virtual Reality. 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). :714—715.
Designing an authentication method is a crucial component to secure privacy in information systems. Virtual Reality (VR) is a new interaction platform, in which the users can interact with natural behaviours (e.g. hand, gaze, head, etc.). In this work, we propose a novel authentication method in which user can perform hand motion in an eyes-free manner. We evaluate the usability and security between eyes-engage and eyes-free input with a pilot study. The initial result revealed our purposed method can achieve a trade-off between usability and security, showing a new way to behaviour-based authentication in VR.
2021-06-28
Zhang, Ning, Lv, Zhiqiang, Zhang, Yanlin, Li, Haiyang, Zhang, Yixin, Huang, Weiqing.  2020.  Novel Design of Hardware Trojan: A Generic Approach for Defeating Testability Based Detection. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :162–173.
Hardware design, especially the very large scale integration(VLSI) and systems on chip design(SOC), utilizes many codes from third-party intellectual property (IP) providers and former designers. Hardware Trojans (HTs) are easily inserted in this process. Recently researchers have proposed many HTs detection techniques targeting the design codes. State-of-art detections are based on the testability including Controllability and Observability, which are effective to all HTs from TrustHub, and advanced HTs like DeTrust. Meanwhile, testability based detections have advantages in the timing complexity and can be easily integrated into recently industrial verification. Undoubtedly, the adversaries will upgrade their designs accordingly to evade these detection techniques. Designing a variety of complex trojans is a significant way to perfect the existing detection, therefore, we present a novel design of HTs to defeat the testability based detection methods, namely DeTest. Our approach is simple and straight forward, yet it proves to be effective at adding some logic. Without changing HTs malicious function, DeTest decreases controllability and observability values to about 10% of the original, which invalidates distinguishers like clustering and support vector machines (SVM). As shown in our practical attack results, adversaries can easily use DeTest to upgrade their HTs to evade testability based detections. Combined with advanced HTs design techniques like DeTrust, DeTest can evade previous detecions, like UCI, VeriTrust and FANCI. We further discuss how to extend existing solutions to reduce the threat posed by DeTest.
2021-05-18
Iorga, Denis, Corlătescu, Dragos, Grigorescu, Octavian, Săndescu, Cristian, Dascălu, Mihai, Rughiniş, Razvan.  2020.  Early Detection of Vulnerabilities from News Websites using Machine Learning Models. 2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet). :1–6.
The drawbacks of traditional methods of cybernetic vulnerability detection relate to the required time to identify new threats, to register them in the Common Vulnerabilities and Exposures (CVE) records, and to score them with the Common Vulnerabilities Scoring System (CVSS). These problems can be mitigated by early vulnerability detection systems relying on social media and open-source data. This paper presents a model that aims to identify emerging cybernetic vulnerabilities in cybersecurity news articles, as part of a system for automatic detection of early cybernetic threats using Open Source Intelligence (OSINT). Three machine learning models were trained on a novel dataset of 1000 labeled news articles to create a strong baseline for classifying cybersecurity articles as relevant (i.e., introducing new security threats), or irrelevant: Support Vector Machines, a Multinomial Naïve Bayes classifier, and a finetuned BERT model. The BERT model obtained the best performance with a mean accuracy of 88.45% on the test dataset. Our experiments support the conclusion that Natural Language Processing (NLP) models are an appropriate choice for early vulnerability detection systems in order to extract relevant information from cybersecurity news articles.
2021-05-13
Tong, Zhongkai, Zhu, Ziyuan, Wang, Zhanpeng, Wang, Limin, Zhang, Yusha, Liu, Yuxin.  2020.  Cache side-channel attacks detection based on machine learning. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :919—926.
Security has always been one of the main concerns in the field of computer architecture and cloud computing. Cache-based side-channel attacks pose a threat to almost all existing architectures and cloud computing. Especially in the public cloud, the cache is shared among multiple tenants, and cache attacks can make good use of this to extract information. Cache side-channel attacks are a problem to be solved for security, in which how to accurately detect cache side-channel attacks has been a research hotspot. Because the cache side-channel attack does not require the attacker to physically contact the target device and does not need additional devices to obtain the side channel information, the cache-side channel attack is efficient and hidden, which poses a great threat to the security of cryptographic algorithms. Based on the AES algorithm, this paper uses hardware performance counters to obtain the features of different cache events under Flush + Reload, Prime + Probe, and Flush + Flush attacks. Firstly, the random forest algorithm is used to filter the cache features, and then the support vector machine algorithm is used to model the system. Finally, high detection accuracy is achieved under different system loads. The detection accuracy of the system is 99.92% when there is no load, the detection accuracy is 99.85% under the average load, and the detection accuracy under full load is 96.57%.
Chen, Ziyu, Zhu, Jizhong, Li, Shenglin, Luo, Tengyan.  2020.  Detection of False Data Injection Attack in Automatic Generation Control System with Wind Energy based on Fuzzy Support Vector Machine. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. :3523—3528.
False data injection attack (FDIA) destroys the automatic generation control (AGC) system and leads to unstable operation of the power system. Fast and accurate detection can help prevent and disrupt malicious attacks. This paper proposes an improved detection method, which is combined with fuzzy theory and support vector machine (SVM) to identify various types of attacks. The impacts of different types of FDIAs on the AGC system are analyzed, and the reliability of the method is proved by a large number of experimental data. This experiment is simulated on a single-area LFC system and the effects of adding a wind storage system were compared in a dynamic model. Simulation studies also show a higher accuracy of fuzzy support vector machine (FSVM) than traditional SVM and fuzzy pattern trees (FPTs).
Hachimi, Marouane, Kaddoum, Georges, Gagnon, Ghyslain, Illy, Poulmanogo.  2020.  Multi-stage Jamming Attacks Detection using Deep Learning Combined with Kernelized Support Vector Machine in 5G Cloud Radio Access Networks. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—5.

In 5G networks, the Cloud Radio Access Network (C-RAN) is considered a promising future architecture in terms of minimizing energy consumption and allocating resources efficiently by providing real-time cloud infrastructures, cooperative radio, and centralized data processing. Recently, given their vulnerability to malicious attacks, the security of C-RAN networks has attracted significant attention. Among various anomaly-based intrusion detection techniques, the most promising one is the machine learning-based intrusion detection as it learns without human assistance and adjusts actions accordingly. In this direction, many solutions have been proposed, but they show either low accuracy in terms of attack classification or they offer just a single layer of attack detection. This research focuses on deploying a multi-stage machine learning-based intrusion detection (ML-IDS) in 5G C-RAN that can detect and classify four types of jamming attacks: constant jamming, random jamming, deceptive jamming, and reactive jamming. This deployment enhances security by minimizing the false negatives in C-RAN architectures. The experimental evaluation of the proposed solution is carried out using WSN-DS (Wireless Sensor Networks DataSet), which is a dedicated wireless dataset for intrusion detection. The final classification accuracy of attacks is 94.51% with a 7.84% false negative rate.

Fei, Wanghao, Moses, Paul, Davis, Chad.  2020.  Identification of Smart Grid Attacks via State Vector Estimator and Support Vector Machine Methods. 2020 Intermountain Engineering, Technology and Computing (IETC). :1—6.

In recent times, an increasing amount of intelligent electronic devices (IEDs) are being deployed to make power systems more reliable and economical. While these technologies are necessary for realizing a cyber-physical infrastructure for future smart power grids, they also introduce new vulnerabilities in the grid to different cyber-attacks. Traditional methods such as state vector estimation (SVE) are not capable of identifying cyber-attacks while the geometric information is also injected as an attack vector. In this paper, a machine learning based smart grid attack identification method is proposed. The proposed method is carried out by first collecting smart grid power flow data for machine learning training purposes which is later used to classify the attacks. The performance of both the proposed SVM method and the traditional SVE method are validated on IEEE 14, 30, 39, 57 and 118 bus systems, and the performance regarding the scale of the power system is evaluated. The results show that the SVM-based method performs better than the SVE-based in attack identification over a much wider scale of power systems.

Hong, Tang, Ju, Tailiang, Li, Yao.  2020.  Address Collision Attacks on ECSM Protected by ADPA. 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :235—239.

Using the physical characteristics of the encryption device, an attacker can more easily obtain the key, which is called side-channel attack. Common side-channel attacks, such as simple power analysis (SPA) and differential power analysis (DPA), mainly focus on the statistical analysis of the data involved in the encryption algorithm, while there are relatively few studies on the Hamming weight of the addresses. Therefore, a new method of address-based Hamming weight analysis, address collision attack, is proposed in this research. The collision attack method (CA) and support vector machines algorithm (SVM) are used for analysis, meanwhile, the scalar multiplication implemented by protected address-bit DPA (ADPA) can be attack on the ChipWhisperer-Pro CW1200.

2021-04-08
Boato, G., Dang-Nguyen, D., Natale, F. G. B. De.  2020.  Morphological Filter Detector for Image Forensics Applications. IEEE Access. 8:13549—13560.
Mathematical morphology provides a large set of powerful non-linear image operators, widely used for feature extraction, noise removal or image enhancement. Although morphological filters might be used to remove artifacts produced by image manipulations, both on binary and gray level documents, little effort has been spent towards their forensic identification. In this paper we propose a non-trivial extension of a deterministic approach originally detecting erosion and dilation of binary images. The proposed approach operates on grayscale images and is robust to image compression and other typical attacks. When the image is attacked the method looses its deterministic nature and uses a properly trained SVM classifier, using the original detector as a feature extractor. Extensive tests demonstrate that the proposed method guarantees very high accuracy in filtering detection, providing 100% accuracy in discriminating the presence and the type of morphological filter in raw images of three different datasets. The achieved accuracy is also good after JPEG compression, equal or above 76.8% on all datasets for quality factors above 80. The proposed approach is also able to determine the adopted structuring element for moderate compression factors. Finally, it is robust against noise addition and it can distinguish morphological filter from other filters.
2021-03-29
Oğuz, K., Korkmaz, İ, Korkmaz, B., Akkaya, G., Alıcı, C., Kılıç, E..  2020.  Effect of Age and Gender on Facial Emotion Recognition. 2020 Innovations in Intelligent Systems and Applications Conference (ASYU). :1—6.

New research fields and applications on human computer interaction will emerge based on the recognition of emotions on faces. With such aim, our study evaluates the features extracted from faces to recognize emotions. To increase the success rate of these features, we have run several tests to demonstrate how age and gender affect the results. The artificial neural networks were trained by the apparent regions on the face such as eyes, eyebrows, nose, mouth, and jawline and then the networks are tested with different age and gender groups. According to the results, faces of older people have a lower performance rate of emotion recognition. Then, age and gender based groups are created manually, and we show that performance rates of facial emotion recognition have increased for the networks that are trained using these particular groups.

Jia, C., Li, C. L., Ying, Z..  2020.  Facial expression recognition based on the ensemble learning of CNNs. 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). :1—5.

As a part of body language, facial expression is a psychological state that reflects the current emotional state of the person. Recognition of facial expressions can help to understand others and enhance communication with others. We propose a facial expression recognition method based on convolutional neural network ensemble learning in this paper. Our model is composed of three sub-networks, and uses the SVM classifier to Integrate the output of the three networks to get the final result. The recognition accuracy of the model's expression on the FER2013 dataset reached 71.27%. The results show that the method has high test accuracy and short prediction time, and can realize real-time, high-performance facial recognition.

Xu, X., Ruan, Z., Yang, L..  2020.  Facial Expression Recognition Based on Graph Neural Network. 2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC). :211—214.

Facial expressions are one of the most powerful, natural and immediate means for human being to present their emotions and intensions. In this paper, we present a novel method for fully automatic facial expression recognition. The facial landmarks are detected for characterizing facial expressions. A graph convolutional neural network is proposed for feature extraction and facial expression recognition classification. The experiments were performed on the three facial expression databases. The result shows that the proposed FER method can achieve good recognition accuracy up to 95.85% using the proposed method.

Olaimat, M. Al, Lee, D., Kim, Y., Kim, J., Kim, J..  2020.  A Learning-based Data Augmentation for Network Anomaly Detection. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1–10.
While machine learning technologies have been remarkably advanced over the past several years, one of the fundamental requirements for the success of learning-based approaches would be the availability of high-quality data that thoroughly represent individual classes in a problem space. Unfortunately, it is not uncommon to observe a significant degree of class imbalance with only a few instances for minority classes in many datasets, including network traffic traces highly skewed toward a large number of normal connections while very small in quantity for attack instances. A well-known approach to addressing the class imbalance problem is data augmentation that generates synthetic instances belonging to minority classes. However, traditional statistical techniques may be limited since the extended data through statistical sampling should have the same density as original data instances with a minor degree of variation. This paper takes a learning-based approach to data augmentation to enable effective network anomaly detection. One of the critical challenges for the learning-based approach is the mode collapse problem resulting in a limited diversity of samples, which was also observed from our preliminary experimental result. To this end, we present a novel "Divide-Augment-Combine" (DAC) strategy, which groups the instances based on their characteristics and augments data on a group basis to represent a subset independently using a generative adversarial model. Our experimental results conducted with two recently collected public network datasets (UNSW-NB15 and IDS-2017) show that the proposed technique enhances performances up to 21.5% for identifying network anomalies.
2021-03-18
Kirkbride, P., Dewan, M. A. Akber, Lin, F..  2020.  Game-Like Captchas for Intrusion Detection. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :312—315.

In this paper, we consider a novel method of mining biometric data for user authentication by replacing traditional captchas with game-like captchas. The game-like captchas present the user with a short game in which they attempt to get a high score. The data produced from a user's game play will be used to produce a behavior biometric based on user interactions, such as mouse movement, click patterns and game choices. The baseline expectation of interactive behavior will be used as a single factor in an intrusion detection system providing continuous authentication, considering the factors such as IP address, location, time of use, website interactions, and behavior anomalies. In addition to acting as a source of data, game-like captchas are expected to deter bots and automated systems from accessing web-based services and improving the user experience for the end-users who have become accustomed to monotonous alternatives, such as Google's re-captcha.

2021-03-09
Muhammad, A., Asad, M., Javed, A. R..  2020.  Robust Early Stage Botnet Detection using Machine Learning. 2020 International Conference on Cyber Warfare and Security (ICCWS). :1—6.

Among the different types of malware, botnets are rising as the most genuine risk against cybersecurity as they give a stage to criminal operations (e.g., Distributed Denial of Service (DDOS) attacks, malware dispersal, phishing, and click fraud and identity theft). Existing botnet detection techniques work only on specific botnet Command and Control (C&C) protocols and lack in providing early-stage botnet detection. In this paper, we propose an approach for early-stage botnet detection. The proposed approach first selects the optimal features using feature selection techniques. Next, it feeds these features to machine learning classifiers to evaluate the performance of the botnet detection. Experiments reveals that the proposed approach efficiently classifies normal and malicious traffic at an early stage. The proposed approach achieves the accuracy of 99%, True Positive Rate (TPR) of 0.99 %, and False Positive Rate (FPR) of 0.007 % and provide an efficient detection rate in comparison with the existing approach.

Guibene, K., Ayaida, M., Khoukhi, L., MESSAI, N..  2020.  Black-box System Identification of CPS Protected by a Watermark-based Detector. 2020 IEEE 45th Conference on Local Computer Networks (LCN). :341–344.

The implication of Cyber-Physical Systems (CPS) in critical infrastructures (e.g., smart grids, water distribution networks, etc.) has introduced new security issues and vulnerabilities to those systems. In this paper, we demonstrate that black-box system identification using Support Vector Regression (SVR) can be used efficiently to build a model of a given industrial system even when this system is protected with a watermark-based detector. First, we briefly describe the Tennessee Eastman Process used in this study. Then, we present the principal of detection scheme and the theory behind SVR. Finally, we design an efficient black-box SVR algorithm for the Tennessee Eastman Process. Extensive simulations prove the efficiency of our proposed algorithm.