Visible to the public Biblio

Found 863 results

Filters: Keyword is data privacy  [Clear All Filters]
2021-09-17
Cheng, Xiuzhen, Chellappan, Sriram, Cheng, Wei, Sahin, Gokhan.  2020.  Guest Editorial Introduction to the Special Section on Network Science for High-Confidence Cyber-Physical Systems. IEEE Transactions on Network Science and Engineering. 7:764–765.
The papers in this special section focus on network science for high confidence cyber-physical systems (CPS) Here CPS refers to the engineered systems that can seamlessly integrate the physical world with the cyber world via advanced computation and communication capabilities. To enable high-confidence CPS for achieving better benefits as well as supporting emerging applications, network science-based theories and methodologies are needed to cope with the ever-growing complexity of smart CPS, to predict the system behaviors, and to model the deep inter-dependencies among CPS and the natural world. The major objective of this special section is to exploit various network science techniques such as modeling, analysis, mining, visualization, and optimization to advance the science of supporting high-confidence CPS for greater assurances of security, safety, scalability, efficiency, and reliability. These papers bring a timely and important research topic. The challenges and opportunities of applying network science approaches to high-confidence CPS are profound and far-reaching.
Conference Name: IEEE Transactions on Network Science and Engineering
2021-09-08
Potluri, Sirisha, Mangla, Monika, Satpathy, Suneeta, Mohanty, Sachi Nandan.  2020.  Detection and Prevention Mechanisms for DDoS Attack in Cloud Computing Environment. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
For optimal use of cloud resources and to reduce the latency of cloud users, the cloud computing model extends the services such as networking facilities, computational capabilities and storage facilities based on demand. Due to the dynamic behavior, distributed paradigm and heterogeneity present among the processing elements, devices and service oriented pay per use policies; the cloud computing environment is having its availability, security and privacy issues. Among these various issues one of the important issues in cloud computing paradigm is DDoS attack. This paper put in plain words the DDoS attack, its detection as well as prevention mechanisms in cloud computing environment. The inclusive study also explains about the effects of DDoS attack on cloud platform and the related defense mechanisms required to be considered.
2021-08-31
Zhang, Yifei, Gao, Neng, Chen, Junsha.  2020.  A Practical Defense against Attribute Inference Attacks in Session-based Recommendations. 2020 IEEE International Conference on Web Services (ICWS). :355–363.
When users in various web and mobile applications enjoy the convenience of recommendation systems, they are vulnerable to attribute inference attacks. The accumulating online behaviors of users (e.g., clicks, searches, ratings) naturally brings out user preferences, and poses an inevitable threat of privacy that adversaries can infer one's private profiles (e.g., gender, sexual orientation, political view) with AI-based algorithms. Existing defense methods assume the existence of a trusted third party, rely on computationally intractable algorithms, or have impact on recommendation utility. These imperfections make them impractical for privacy preservation in real-life scenarios. In this work, we introduce BiasBooster, a practical proactive defense method based on behavior segmentation, to protect user privacy against attribute inference attacks from user behaviors, while retaining recommendation utility with a heuristic recommendation aggregation module. BiasBooster is a user-centric approach from client side, which proactively divides a user's behaviors into weakly related segments and perform them with several dummy identities, then aggregates real-time recommendations for user from different dummy identities. We estimate its effectiveness of preservation on both privacy and recommendation utility through extensive evaluations on two real-world datasets. A Chrome extension is conducted to demonstrate the feasibility of applying BiasBooster in real world. Experimental results show that compared to existing defenses, BiasBooster substantially reduces the averaged accuracy of attribute inference attacks, with minor utility loss of recommendations.
Vonitsanos, Gerasimos, Dritsas, Elias, Kanavos, Andreas, Mylonas, Phivos, Sioutas, Spyros.  2020.  Security and Privacy Solutions associated with NoSQL Data Stores. 2020 15th International Workshop on Semantic and Social Media Adaptation and Personalization (SMA). :1—5.
Technologies such as cloud computing and big data management, have lately made significant progress creating an urgent need for specific databases that can safely store extensive data along with high availability. Specifically, a growing number of companies have adopted various types of non-relational databases, commonly referred to as NoSQL databases. These databases provide a robust mechanism for the storage and retrieval of large amounts of data without using a predefined schema. NoSQL platforms are superior to RDBMS, especially in cases when we are dealing with big data and parallel processing, and in particular, when there is no need to use relational modeling. Sensitive data is stored daily in NoSQL Databases, making the privacy problem more serious while raising essential security issues. In our paper, security and privacy issues when dealing with NoSQL databases are introduced and in following, security mechanisms and privacy solutions are thoroughly examined.
2021-08-17
Wu, Wenxiang, Fu, Shaojing, Luo, Yuchuan.  2020.  Practical Privacy Protection Scheme In WiFi Fingerprint-based Localization. 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA). :699—708.
The solution of using existing WiFi devices for measurement and maintenance, and establishing a WiFi fingerprint database for precise localization has become a popular method for indoor localization. The traditional WiFi fingerprint privacy protection scheme increases the calculation amount of the client, but cannot completely protect the security of the client and the fingerprint database. In this paper, we make use of WiFi devices to present a Practical Privacy Protection Scheme In WiFi Fingerprint-based Localization PPWFL. In PPWFL, the localization server establishes a pre-partition in the fingerprint database through the E-M clustering algorithm, we divide the entire fingerprint database into several partitions. The server uses WiFi fingerprint entries with partitions as training data and trains a machine learning model. This model can accurately predict the client's partition based on fingerprint entries. The client uses the trained machine learning model to obtain its partition location accurately, picks up WiFi fingerprint entries in its partition, and calculates its geographic location with the localization server through secure multi-party computing. Compared with the traditional solution, our solution only uses the WiFi fingerprint entries in the client's partition rather than the entire fingerprint database. PPWFL can reduce not only unnecessary calculations but also avoid accidental errors (Unexpected errors in fingerprint similarity between non-adjacent locations due to multipath effects of electromagnetic waves during the propagation of complex indoor environments) in fingerprint distance calculation. In particular, due to the use of Secure Multi-Party Computation, most of the calculations are performed in the local offline phase, the client only exchanges data with the localization server during the distance calculation phase. No additional equipment is needed; our solution uses only existing WiFi devices in the building to achieve fast localization based on privacy protection. We prove that PPWFL is secure under the honest but curious attacker. Experiments show that PPWFL achieves efficiency and accuracy than the traditional WiFi fingerprint localization scheme.
Wang, Zicheng, Cui, Bo.  2020.  An Enhanced System for Smart Home in IPv6-Based Wireless Home Network. 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC). :119–122.
The development of IPv6-based wireless local area networks is becoming increasingly mature, and it has defined no less than different standards to meet the needs of different applications. Wireless home networks are widely used because they can be seamlessly connected to daily life, especially smart home devices linked to it. There are certain security issues with smart home devices deployed in wireless home networks, such as data tampering and leakage of sensitive information. This paper proposes a smart home management system based on IPv6 wireless home network, and develops a prototype system deployed on mobile portable devices. Through this system, different roles in the wireless home network can be dynamically authorized and smart home resources can be allocated to achieve the purpose of access control and management.
2021-08-11
Meskanen, Tommi, Niemi, Valtteri, Kuusijäarvi, Jarkko.  2020.  Privacy-Preserving Peer Discovery for Group Management in p2p Networks. 2020 27th Conference of Open Innovations Association (FRUCT). :150—156.
The necessity for peer-to-peer (p2p) communications is obvious; current centralized solutions are capturing and storing too much information from the individual people communicating with each other. Privacy concerns with a centralized solution in possession of all the users data are a difficult matter. HELIOS platform introduces a new social-media platform that is not in control of any central operator, but brings the power of possession of the data back to the users. It does not have centralized servers that store and handle receiving/sending of the messages. Instead, it relies on the current open-source solutions available in the p2p communities to propagate the messages to the wanted recipients of the data and/or messages. The p2p communications also introduce new problems in terms of privacy and tracking of the user, as the nodes part of a p2p network can see what data the other nodes provide and ask for. How the sharing of data in a p2p network can be achieved securely, taking into account the user's privacy is a question that has not been fully answered so far. We do not claim we answer this question fully in this paper either, but we propose a set of protocols to help answer one specific problem. Especially, this paper proposes how to privately share data (end-point address or other) of the user between other users, provided that they have previously connected with each other securely, either offline or online.
2021-08-02
Wagner, Torrey J., Ford, Thomas C..  2020.  Metrics to Meet Security amp; Privacy Requirements with Agile Software Development Methods in a Regulated Environment. 2020 International Conference on Computing, Networking and Communications (ICNC). :17—23.
This work examines metrics that can be used to measure the ability of agile software development methods to meet security and privacy requirements of communications applications. Many implementations of communication protocols, including those in vehicular networks, occur within regulated environments where agile development methods are traditionally discouraged. We propose a framework and metrics to measure adherence to security, quality and software effectiveness regulations if developers desire the cost and schedule benefits of agile methods. After providing an overview of specific challenges that a regulated environment imposes on communications software development, we proceed to examine the 12 agile principles and how they relate to a regulatory environment. From this review we identify two metrics to measure performance of three key regulatory attributes of software for communications applications, and then recommend an approach of either tools, agile methods or DevOps that is best positioned to satisfy its regulated environment attributes. By considering the recommendations in this paper, managers of software-dominant communications programs in a regulated environment can gain insight into leveraging the benefits of agile methods.
Zhou, Eda, Turcotte, Joseph, De Carli, Lorenzo.  2020.  Enabling Security Analysis of IoT Device-to-Cloud Traffic. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1888—1894.
End-to-end encryption is now ubiquitous on the internet. By securing network communications with TLS, parties can insure that in-transit data remains inaccessible to collection and analysis. In the IoT domain however, end-to-end encryption can paradoxically decrease user privacy, as many IoT devices establish encrypted communications with the manufacturer's cloud backend. The content of these communications remains opaque to the user and in several occasions IoT devices have been discovered to exfiltrate private information (e.g., voice recordings) without user authorization. In this paper, we propose Inspection-Friendly TLS (IF-TLS), an IoT-oriented, TLS-based middleware protocol that preserves the encryption offered by TLS while allowing traffic analysis by middleboxes under the user's control. Differently from related efforts, IF-TLS is designed from the ground up for the IoT world, adding limited complexity on top of TLS and being fully controllable by the residential gateway. At the same time it provides flexibility, enabling the user to offload traffic analysis to either the gateway itself, or cloud-based middleboxes. We implemented a stable, Python-based prototype IF-TLS library; preliminary results show that performance overhead is limited and unlikely to affect quality-of-experience.
2021-07-27
MacDermott, Áine, Carr, John, Shi, Qi, Baharon, Mohd Rizuan, Lee, Gyu Myoung.  2020.  Privacy Preserving Issues in the Dynamic Internet of Things (IoT). 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
Convergence of critical infrastructure and data, including government and enterprise, to the dynamic Internet of Things (IoT) environment and future digital ecosystems exhibit significant challenges for privacy and identity in these interconnected domains. There are an increasing variety of devices and technologies being introduced, rendering existing security tools inadequate to deal with the dynamic scale and varying actors. The IoT is increasingly data driven with user sovereignty being essential - and actors in varying scenarios including user/customer, device, manufacturer, third party processor, etc. Therefore, flexible frameworks and diverse security requirements for such sensitive environments are needed to secure identities and authenticate IoT devices and their data, protecting privacy and integrity. In this paper we present a review of the principles, techniques and algorithms that can be adapted from other distributed computing paradigms. Said review will be used in application to the development of a collaborative decision-making framework for heterogeneous entities in a distributed domain, whilst simultaneously highlighting privacy preserving issues in the IoT. In addition, we present our trust-based privacy preserving schema using Dempster-Shafer theory of evidence. While still in its infancy, this application could help maintain a level of privacy and nonrepudiation in collaborative environments such as the IoT.
Van Vu, Thi, Luong, The Dung, Hoang, Van Quan.  2020.  An Elliptic Curve-based Protocol for Privacy Preserving Frequency Computation in 2-Part Fully Distributed Setting. 2020 12th International Conference on Knowledge and Systems Engineering (KSE). :91–96.
Privacy-preserving frequency computation is critical to privacy-preserving data mining in 2-Part Fully Distributed Setting (such as association rule analysis, clustering, and classification analysis) and has been investigated in many researches. However, these solutions are based on the Elgamal Cryptosystem, making computation and communication efficiency low. Therefore, this paper proposes an improved protocol using an Elliptic Curve Cryptosystem. The theoretical and experimental analysis shows that the proposed method is effective in both computing and communication compared to other methods.
Jiao, Rui, Zhang, Lan, Li, Anran.  2020.  IEye: Personalized Image Privacy Detection. 2020 6th International Conference on Big Data Computing and Communications (BIGCOM). :91–95.
Massive images are being shared via a variety of ways, such as social networking. The rich content of images raise a serious concern for privacy. A great number of efforts have been devoted to designing mechanisms for privacy protection based on the assumption that the privacy is well defined. However, in practice, given a collection of images it is usually nontrivial to decide which parts of images should be protected, since the sensitivity of objects is context-dependent and user-dependent. To meet personalized privacy requirements of different users, we propose a system IEye to automatically detect private parts of images based on both common knowledge and personal knowledge. Specifically, for each user's images, multi-layered semantic graphs are constructed as feature representations of his/her images and a rule set is learned from those graphs, which describes his/her personalized privacy. In addition, an optimization algorithm is proposed to protect the user's privacy as well as minimize the loss of utility. We conduct experiments on two datasets, the results verify the effectiveness of our design to detect and protect personalized image privacy.
Zheng, Zhihao, Cao, Zhenfu, Shen, Jiachen.  2020.  Practical and Secure Circular Range Search on Private Spatial Data. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :639–645.
With the location-based services (LBS) booming, the volume of spatial data inevitably explodes. In order to reduce local storage and computational overhead, users tend to outsource data and initiate queries to the cloud. However, sensitive data or queries may be compromised if cloud server has access to raw data and plaintext token. To cope with this problem, searchable encryption for geometric range is applied. Geometric range search has wide applications in many scenarios, especially the circular range search. In this paper, a practical and secure circular range search scheme (PSCS) is proposed to support searching for spatial data in a circular range. With our scheme, a semi-honest cloud server will return data for a given circular range correctly without uncovering index privacy or query privacy. We propose a polynomial split algorithm which can decompose the inner product calculation neatly. Then, we define the security of our PSCS formally and prove that it is secure under same-closeness-pattern chosen-plaintext attacks (CLS-CPA) in theory. In addition, we demonstrate the efficiency and accuracy through analysis and experiments compared with existing schemes.
2021-07-08
Chaturvedi, Amit Kumar, Chahar, Meetendra Singh, Sharma, Kalpana.  2020.  Proposing Innovative Perturbation Algorithm for Securing Portable Data on Cloud Servers. 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART). :360—364.
Cloud computing provides an open architecture and resource sharing computing platform with pay-per-use model. It is now a popular computing platform and most of the new internet based computing services are on this innovation supported environment. We consider it as innovation supported because developers are more focused here on the service design, rather on arranging the infrastructure, network, management of the resources, etc. These all things are available in cloud computing on hired basis. Now, a big question arises here is the security of data or privacy of data because the service provider is already using the infrastructure, network, storage, processors, and other more resources from the third party. So, the security or privacy of the portable user's data is the main motivation for writing this research paper. In this paper, we are proposing an innovative perturbation algorithm MAP() to secure the portable user's data on the cloud server.
Rao, Liting, Xie, Qingqing, Zhao, Hui.  2020.  Data Sharing for Multiple Groups with Privacy Preservation in the Cloud. 2020 International Conference on Internet of Things and Intelligent Applications (ITIA). :1—5.
With almost unlimited storage capacity and low maintenance cost, cloud storage becomes a convenient and efficient way for data sharing among cloud users. However, this introduces the challenges of access control and privacy protection when data sharing for multiple groups, as each group usually has its own encryption and access control mechanism to protect data confidentiality. In this paper, we propose a multiple-group data sharing scheme with privacy preservation in the cloud. This scheme constructs a flexible access control framework by using group signature, ciphertext-policy attribute-based encryption and broadcast encryption, which supports both intra-group and cross-group data sharing with anonymous access. Furthermore, our scheme supports efficient user revocation. The security and efficiency of the scheme are proved thorough analysis and experiments.
Ilokah, Munachiso, Eklund, J. Mikael.  2020.  A Secure Privacy Preserving Cloud-based Framework for Sharing Electronic Health Data*. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC). :5592—5597.
There exists a need for sharing user health data, especially with institutes for research purposes, in a secure fashion. This is especially true in the case of a system that includes a third party storage service, such as cloud computing, which limits the control of the data owner. The use of encryption for secure data storage continues to evolve to meet the need for flexible and fine-grained access control. This evolution has led to the development of Attribute Based Encryption (ABE). The use of ABE to ensure the security and privacy of health data has been explored. This paper presents an ABE based framework which allows for the secure outsourcing of the more computationally intensive processes for data decryption to the cloud servers. This reduces the time needed for decryption to occur at the user end and reduces the amount of computational power needed by users to access data.
Abdo, Mahmoud A., Abdel-Hamid, Ayman A., Elzouka, Hesham A..  2020.  A Cloud-based Mobile Healthcare Monitoring Framework with Location Privacy Preservation. 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT). :1—8.
Nowadays, ubiquitous healthcare monitoring applications are becoming a necessity. In a pervasive smart healthcare system, the user's location information is always transmitted periodically to healthcare providers to increase the quality of the service provided to the user. However, revealing the user's location will affect the user's privacy. This paper presents a novel cloud-based secure location privacy-preserving mobile healthcare framework with decision-making capabilities. A user's vital signs are sensed possibly through a wearable healthcare device and transmitted to a cloud server for securely storing user's data, processing, and decision making. The proposed framework integrates a number of features such as machine learning (ML) for classifying a user's health state, and crowdsensing for collecting information about a person's privacy preferences for possible locations and applying such information to a user who did not set his privacy preferences. In addition to location privacy preservation methods (LPPM) such as obfuscation, perturbation and encryption to protect the location of the user and provide a secure monitoring framework. The proposed framework detects clear emergency cases and quickly decides about sending a help message to a healthcare provider before sending data to the cloud server. To validate the efficiency of the proposed framework, a prototype is developed and tested. The obtained results from the proposed prototype prove its feasibility and utility. Compared to the state of art, the proposed framework offers an adaptive context-based decision for location sharing privacy and controlling the trade-off between location privacy and service utility.
Raja, S. Kanaga Suba, Sathya, A., Priya, L..  2020.  A Hybrid Data Access Control Using AES and RSA for Ensuring Privacy in Electronic Healthcare Records. 2020 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS). :1—5.
In the current scenario, the data owners would like to access data from anywhere and anytime. Hence, they will store their data in public or private cloud along with encryption and particular set of attributes to access control on the cloud data. While uploading the data into public or private cloud they will assign some attribute set to their data. If any authorized cloud user wants to download their data they should enter that particular attribute set to perform further actions on the data owner's data. A cloud user wants to register their details under cloud organization to access the data owner's data. Users wants to submit their details as attributes along with their designation. Based on the Users details Semi-Trusted Authority generates decryption keys to get control on owner's data. A user can perform a lot of operation over the cloud data. If the user wants to read the cloud data he needs to be entering some read related, and if he wants to write the data he needs to be entering write related attribute. For each and every action user in an organization would be verified with their unique attribute set. These attributes will be stored by the admins to the authorized users in cloud organization. These attributes will be stored in the policy files in a cloud. Along with this attribute,a rule based engine is used, to provide the access control to user. If any user leaks their decryption key to the any malicious user data owners wants to trace by sending audit request to auditor and auditor will process the data owners request and concludes that who is the convict.
Kanchanadevi, P., Raja, Laxmi, Selvapandian, D., Dhanapal, R..  2020.  An Attribute Based Encryption Scheme with Dynamic Attributes Supporting in the Hybrid Cloud. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :271—273.
Cloud computing is the flexible platform to outsource the data from local server to commercial cloud. However cloud provides tremendous benefits to user, data privacy and data leakage reduce the attention of cloud. For protecting data privacy and reduce data leakage various techniques has to be implemented in cloud. There are various types of cloud environment, but we concentrate on Hybrid cloud. Hybrid cloud is nothing but combination of more than two or more cloud. Where critical operations are performed in private cloud and non critical operations are performed in public cloud. So, it has numerous advantages and criticality too. In this paper, we focus on data security through encryption scheme over Hybrid Cloud. There are various encryption schemes are close to us but it also have data security issues. To overcome these issues, Attribute Based Encryption Scheme with Dynamic Attributes Supporting (ABE-DAS) has proposed. Attribute based Encryption Scheme with Dynamic Attributes Supporting technique enhance the security of the data in hybrid cloud.
2021-07-07
Moustafa, Nour, Ahmed, Mohiuddin, Ahmed, Sherif.  2020.  Data Analytics-Enabled Intrusion Detection: Evaluations of ToNİoT Linux Datasets. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :727–735.
With the widespread of Artificial Intelligence (AI)-enabled security applications, there is a need for collecting heterogeneous and scalable data sources for effectively evaluating the performances of security applications. This paper presents the description of new datasets, named ToNİoT datasets that include distributed data sources collected from Telemetry datasets of Internet of Things (IoT) services, Operating systems datasets of Windows and Linux, and datasets of Network traffic. The paper aims to describe the new testbed architecture used to collect Linux datasets from audit traces of hard disk, memory and process. The architecture was designed in three distributed layers of edge, fog, and cloud. The edge layer comprises IoT and network systems, the fog layer includes virtual machines and gateways, and the cloud layer includes data analytics and visualization tools connected with the other two layers. The layers were programmatically controlled using Software-Defined Network (SDN) and Network-Function Virtualization (NFV) using the VMware NSX and vCloud NFV platform. The Linux ToNİoT datasets would be used to train and validate various new federated and distributed AI-enabled security solutions such as intrusion detection, threat intelligence, privacy preservation and digital forensics. Various Data analytical and machine learning methods are employed to determine the fidelity of the datasets in terms of examining feature engineering, statistics of legitimate and security events, and reliability of security events. The datasets can be publicly accessed from [1].
Suciu, George, Hussain, Ijaz, Petrescu, Gabriel.  2020.  Role of Ubiquitous Computing and Mobile WSN Technologies and Implementation. 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). :1–6.
Computing capabilities such as real time data, unlimited connection, data from sensors, environmental analysis, automated decisions (machine learning) are demanded by many areas like industry for example decision making, machine learning, by research and military, for example GPS, sensor data collection. The possibility to make these features compatible with each domain that demands them is known as ubiquitous computing. Ubiquitous computing includes network topologies such as wireless sensor networks (WSN) which can help further improving the existing communication, for example the Internet. Also, ubiquitous computing is included in the Internet of Things (IoT) applications. In this article, it is discussed the mobility of WSN and its advantages and innovations, which make possible implementations for smart home and office. Knowing the growing number of mobile users, we place the mobile phone as the key factor of the future ubiquitous wireless networks. With secure computing, communicating, and storage capacities of mobile devices, they can be taken advantage of in terms of architecture in the sense of scalability, energy efficiency, packet delay, etc. Our work targets to present a structure from a ubiquitous computing point of view for researchers who have an interest in ubiquitous computing and want to research on the analysis, to implement a novel method structure for the ubiquitous computing system in military sectors. Also, this paper presents security and privacy issues in ubiquitous sensor networks (USN).
2021-06-28
Sendhil, R., Amuthan, A..  2020.  A Comparative Study on security breach in Fog computing and its impact. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :247–251.
Budding technologies like IoT requires minimum latency for performing real-time applications. The IoT devices collect a huge amount of big data and stores in the cloud environment, because of its on-demand services and scalability. But processing the needed information of the IoT devices from the cloud computing environment is found to be time-sensitive one. To eradicate this issue fog computing environment was created which acts an intermediate between the IoT devices and cloud computing environment. The fog computing performs intermediate computation and storage which is needed by IoT devices and it eliminates the drawbacks of latency and bandwidth limitation faced by directly using cloud computing for storage and accessing. The fog computing even though more advantageous it is more exposed to security issues by its architecture. This paper concentrates more on the security issues met by fog computing and the present methods used by the researchers to secure fog with their pros and cons.
2021-06-24
King, Andrew, Kaleem, Faisal, Rabieh, Khaled.  2020.  A Survey on Privacy Issues of Augmented Reality Applications. 2020 IEEE Conference on Application, Information and Network Security (AINS). :32—40.
Privacy is one of the biggest concerns of the coming decade, ranking third among concerns of consumers. Data breaches and leaks are constantly in the news with companies like Facebook and Amazon being outed for their excessive data collection. With companies and governmental agencies tracking and monitoring individuals to a great degree, there are concerns that contemporary technologies that feed into these systems can be misused or misappropriated further. Frameworks currently in place fail to address many of these consumer's concerns and even the legal framework could use further elaboration to better control the way data is handled. In this paper, We address the current industrial standards, frameworks, and concerns of one of the biggest technology trends right now, the Augmented Reality. The expected prevalence of augmented reality applications necessitates a deeper study not only of their security but the expected challenges of users using such applications as well.
Gamagedara Arachchilage, Nalin Asanka, Hameed, Mumtaz Abdul.  2020.  Designing a Serious Game: Teaching Developers to Embed Privacy into Software Systems. 2020 35th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW). :7—12.
Software applications continue to challenge user privacy when users interact with them. Privacy practices (e.g. Data Minimisation (DM), Privacy by Design (PbD) or General Data Protection Regulation (GDPR)) and related “privacy engineering” methodologies exist and provide clear instructions for developers to implement privacy into software systems they develop that preserve user privacy. However, those practices and methodologies are not yet a common practice in the software development community. There has been no previous research focused on developing “educational” interventions such as serious games to enhance software developers' coding behaviour. Therefore, this research proposes a game design framework as an educational tool for software developers to improve (secure) coding behaviour, so they can develop privacy-preserving software applications that people can use. The elements of the proposed framework were incorporated into a gaming application scenario that enhances the software developers' coding behaviour through their motivation. The proposed work not only enables the development of privacy-preserving software systems but also helping the software development community to put privacy guidelines and engineering methodologies into practice.
2021-06-02
Anbumani, P., Dhanapal, R..  2020.  Review on Privacy Preservation Methods in Data Mining Based on Fuzzy Based Techniques. 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). :689—694.
The most significant motivation behind calculations in data mining will play out excavation on incomprehensible past examples since the extremely large data size. During late occasions there are numerous phenomenal improvements in data assembling because of the advancement in the field of data innovation. Lately, Privacy issues in data Preservation didn't get a lot of consideration in the process mining network; nonetheless, a few protection safeguarding procedures in data change strategies have been proposed in the data mining network. There are more normal distinction between data mining and cycle mining exist yet there are key contrasts that make protection safeguarding data mining methods inadmissible to mysterious cycle data. Results dependent on the data mining calculation can be utilized in different regions, for example, Showcasing, climate estimating and Picture Examination. It is likewise uncovered that some delicate data has a result of the mining calculation. Here we can safeguard the Privacy by utilizing PPT (Privacy Preservation Techniques) strategies. Important Concept in data mining is privacy preservation Techniques (PPT) because data exchanged between different persons needs security, so that other persons didn't know what actual data transferred between the actual persons. Preservation in data mining deals that not showing the output information / data in the data mining by using various methods while the output data is precious. There are two techniques used for privacy preservation techniques. One is to alter the input information / data and another one is to alter the output information / data. The method is proposed for protection safeguarding in data base environmental factors is data change. This capacity has fuzzy three-sided participation with this strategy for data change to change the first data collection.