Visible to the public Biblio

Found 310 results

Filters: Keyword is data privacy  [Clear All Filters]
2019-08-05
Tao, Y., Lei, Z., Ruxiang, P..  2018.  Fine-Grained Big Data Security Method Based on Zero Trust Model. 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS). :1040-1045.

With the rapid development of big data technology, the requirement of data processing capacity and efficiency result in failure of a number of legacy security technologies, especially in the data security domain. Data security risks became extremely important for big data usage. We introduced a novel method to preform big data security control, which comprises three steps, namely, user context recognition based on zero trust, fine-grained data access authentication control, and data access audit based on full network traffic to recognize and intercept risky data access in big data environment. Experiments conducted on the fine-grained big data security method based on the zero trust model of drug-related information analysis system demonstrated that this method can identify the majority of data security risks.

Hiremath, S., Kunte, S. R..  2018.  Ensuring Cloud Data Security Using Public Auditing with Privacy Preserving. 2018 3rd International Conference on Communication and Electronics Systems (ICCES). :1100-1104.

The Cloud computing in simple terms is storing and accessing data through internet. The data stored in the cloud is managed by cloud service providers. Storing data in cloud saves users time and memory. But once user stores data in cloud, he loses the control over his data. Hence there must be some security issues to be handled to keep users data safely in the cloud. In this work, we projected a secure auditing system using Third Party Auditor (TPA). We used Advanced Encryption Standard (AES) algorithm for encrypting user's data and Secure Hash Algorithm (SHA-2) to compute message digest. The system is executed in Amazon EC2 cloud by creating windows server instance. The results obtained demonstrates that our proposed work is safe and takes a firm time to audit the files.

Jimenez, J. I., Jahankhani, H..  2019.  “Privacy by Design” Governance Framework to Achieve Privacy Assurance of Personal Health Information (PHI) Processed by IoT-based Telemedicine Devices and Applications Within Healthcare Services. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :212–212.
Future that IoT has to enhance the productivity on healthcare applications.
2019-07-01
Ferreyra, N. E. Díaz, Meisy, R., Heiselz, M..  2018.  At Your Own Risk: Shaping Privacy Heuristics for Online Self-Disclosure. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1-10.

Revealing private and sensitive information on Social Network Sites (SNSs) like Facebook is a common practice which sometimes results in unwanted incidents for the users. One approach for helping users to avoid regrettable scenarios is through awareness mechanisms which inform a priori about the potential privacy risks of a self-disclosure act. Privacy heuristics are instruments which describe recurrent regrettable scenarios and can support the generation of privacy awareness. One important component of a heuristic is the group of people who should not access specific private information under a certain privacy risk. However, specifying an exhaustive list of unwanted recipients for a given regrettable scenario can be a tedious task which necessarily demands the user's intervention. In this paper, we introduce an approach based on decision trees to instantiate the audience component of privacy heuristics with minor intervention from the users. We introduce Disclosure- Acceptance Trees, a data structure representative of the audience component of a heuristic and describe a method for their generation out of user-centred privacy preferences.

Li, D., Zhang, Z., Liao, W., Xu, Z..  2018.  KLRA: A Kernel Level Resource Auditing Tool For IoT Operating System Security. 2018 IEEE/ACM Symposium on Edge Computing (SEC). :427-432.

Nowadays, the rapid development of the Internet of Things facilitates human life and work, while it also brings great security risks to the society due to the frequent occurrence of various security issues. IoT device has the characteristics of large-scale deployment and single responsibility application, which makes it easy to cause a chain reaction and results in widespread privacy leakage and system security problems when the software vulnerability is identified. It is difficult to guarantee that there is no security hole in the IoT operating system which is usually designed for MCU and has no kernel mode. An alternative solution is to identify the security issues in the first time when the system is hijacked and suspend the suspicious task before it causes irreparable damage. This paper proposes KLRA (A Kernel Level Resource Auditing Tool) for IoT Operating System Security This tool collects the resource-sensitive events in the kernel and audit the the resource consumption pattern of the system at the same time. KLRA can take fine-grained events measure with low cost and report the relevant security warning in the first time when the behavior of the system is abnormal compared with daily operations for the real responsibility of this device. KLRA enables the IoT operating system for MCU to generate the security early warning and thereby provides a self-adaptive heuristic security mechanism for the entire IoT system.

Modi, F. M., Desai, M. R., Soni, D. R..  2018.  A Third Party Audit Mechanism for Cloud Based Storage Using File Versioning and Change Tracking Mechanism. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA). :521-523.

Cloud storage is an exclusive resource in cloud computing, which helps to store and share the data on cloud storage server. Clients upload the data and its hash information n server together on cloud storage. The file owner always concern about data security like privacy and unauthorized access to third party. The owner also wants to ensure the integrity data during communication process. To ensure integrity, we propose a framework based on third party auditor which checks the integrity and correctness of data during audit process. Our aim is to design custom hash for the file which is not only justifies the integrity but also version information about file.

2019-06-24
Cao, H., Liu, S., Guan, Z., Wu, L., Deng, H., Du, X..  2018.  An Efficient Privacy-Preserving Algorithm Based on Randomized Response in IoT-Based Smart Grid. 2018 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :881–886.

In this paper, we propose a new randomized response algorithm that can achieve differential-privacy and utility guarantees for consumer's behaviors, and process a batch of data at each time. Firstly, differing from traditional differential private approach-es, we add randomized response noise into the behavior signa-tures matrix to achieve an acceptable utility-privacy tradeoff. Secondly, a behavior signature modeling method based on sparse coding is proposed. After some lightweight trainings us-ing the energy consumption data, the dictionary will be associat-ed with the behavior characteristics of the electric appliances. At last, through the experimental results verification, we find that our Algorithm can preserve consumer's privacy without comprising utility.

You, Y., Li, Z., Oechtering, T. J..  2018.  Optimal Privacy-Enhancing And Cost-Efficient Energy Management Strategies For Smart Grid Consumers. 2018 IEEE Statistical Signal Processing Workshop (SSP). :826–830.

The design of optimal energy management strategies that trade-off consumers' privacy and expected energy cost by using an energy storage is studied. The Kullback-Leibler divergence rate is used to assess the privacy risk of the unauthorized testing on consumers' behavior. We further show how this design problem can be formulated as a belief state Markov decision process problem so that standard tools of the Markov decision process framework can be utilized, and the optimal solution can be obtained by using Bellman dynamic programming. Finally, we illustrate the privacy-enhancement and cost-saving by numerical examples.

Okay, F. Y., Ozdemir, S..  2018.  A secure data aggregation protocol for fog computing based smart grids. 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018). :1–6.

In Smart Grids (SGs), data aggregation process is essential in terms of limiting packet size, data transmission amount and data storage requirements. This paper presents a novel Domingo-Ferrer additive privacy based Secure Data Aggregation (SDA) scheme for Fog Computing based SGs (FCSG). The proposed protocol achieves end-to-end confidentiality while ensuring low communication and storage overhead. Data aggregation is performed at fog layer to reduce the amount of data to be processed and stored at cloud servers. As a result, the proposed protocol achieves better response time and less computational overhead compared to existing solutions. Moreover, due to hierarchical architecture of FCSG and additive homomorphic encryption consumer privacy is protected from third parties. Theoretical analysis evaluates the effects of packet size and number of packets on transmission overhead and the amount of data stored in cloud server. In parallel with the theoretical analysis, our performance evaluation results show that there is a significant improvement in terms of data transmission and storage efficiency. Moreover, security analysis proves that the proposed scheme successfully ensures the privacy of collected data.

Oriero, E., Rahman, M. A..  2018.  Privacy Preserving Fine-Grained Data Distribution Aggregation for Smart Grid AMI Networks. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :1–9.

An advanced metering infrastructure (AMI)allows real-time fine-grained monitoring of the energy consumption data of individual consumers. Collected metering data can be used for a multitude of applications. For example, energy demand forecasting, based on the reported fine-grained consumption, can help manage the near future energy production. However, fine- grained metering data reporting can lead to privacy concerns. It is, therefore, imperative that the utility company receives the fine-grained data needed to perform the intended demand response service, without learning any sensitive information about individual consumers. In this paper, we propose an anonymous privacy preserving fine-grained data aggregation scheme for AMI networks. In this scheme, the utility company receives only the distribution of the energy consumption by the consumers at different time slots. We leverage a network tree topology structure in which each smart meter randomly reports its energy consumption data to its parent smart meter (according to the tree). The parent node updates the consumption distribution and forwards the data to the utility company. Our analysis results show that the proposed scheme can preserve the privacy and security of individual consumers while guaranteeing the demand response service.

Wang, J., Zhang, X., Zhang, H., Lin, H., Tode, H., Pan, M., Han, Z..  2018.  Data-Driven Optimization for Utility Providers with Differential Privacy of Users' Energy Profile. 2018 IEEE Global Communications Conference (GLOBECOM). :1–6.

Smart meters migrate conventional electricity grid into digitally enabled Smart Grid (SG), which is more reliable and efficient. Fine-grained energy consumption data collected by smart meters helps utility providers accurately predict users' demands and significantly reduce power generation cost, while it imposes severe privacy risks on consumers and may discourage them from using those “espionage meters". To enjoy the benefits of smart meter measured data without compromising the users' privacy, in this paper, we try to integrate distributed differential privacy (DDP) techniques into data-driven optimization, and propose a novel scheme that not only minimizes the cost for utility providers but also preserves the DDP of users' energy profiles. Briefly, we add differential private noises to the users' energy consumption data before the smart meters send it to the utility provider. Due to the uncertainty of the users' demand distribution, the utility provider aggregates a given set of historical users' differentially private data, estimates the users' demands, and formulates the data- driven cost minimization based on the collected noisy data. We also develop algorithms for feasible solutions, and verify the effectiveness of the proposed scheme through simulations using the simulated energy consumption data generated from the utility company's real data analysis.

2019-06-10
Hu, Y., Li, X., Liu, J., Ding, H., Gong, Y., Fang, Y..  2018.  Mitigating Traffic Analysis Attack in Smartphones with Edge Network Assistance. 2018 IEEE International Conference on Communications (ICC). :1–6.

With the growth of smartphone sales and app usage, fingerprinting and identification of smartphone apps have become a considerable threat to user security and privacy. Traffic analysis is one of the most common methods for identifying apps. Traditional countermeasures towards traffic analysis includes traffic morphing and multipath routing. The basic idea of multipath routing is to increase the difficulty for adversary to eavesdrop all traffic by splitting traffic into several subflows and transmitting them through different routes. Previous works in multipath routing mainly focus on Wireless Sensor Networks (WSNs) or Mobile Ad Hoc Networks (MANETs). In this paper, we propose a multipath routing scheme for smartphones with edge network assistance to mitigate traffic analysis attack. We consider an adversary with limited capability, that is, he can only intercept the traffic of one node following certain attack probability, and try to minimize the traffic an adversary can intercept. We formulate our design as a flow routing optimization problem. Then a heuristic algorithm is proposed to solve the problem. Finally, we present the simulation results for our scheme and justify that our scheme can effectively protect smartphones from traffic analysis attack.

2019-05-20
F, A. K., Mhaibes, H. Imad.  2018.  A New Initial Authentication Scheme for Kerberos 5 Based on Biometric Data and Virtual Password. 2018 International Conference on Advanced Science and Engineering (ICOASE). :280–285.

Kerberos is a third party and widely used authentication protocol, in which it enables computers to connect securely using a single sign-on over an insecure channel. It proves the identity of clients and encrypts all the communications between them to ensure data privacy and integrity. Typically, Kerberos composes of three communication phases to establish a secure session between any two clients. The authentication is based on a password-based scheme, in which it is a secret long-term key shared between the client and the Kerberos. Therefore, Kerberos suffers from a password-guessing attack, the main drawback of Kerberos. In this paper, we overcome this limitation by modifying the first initial phase using the virtual password and biometric data. In addition, the proposed protocol provides a strong authentication scenario against multiple types of attacks.

Terkawi, A., Innab, N., al-Amri, S., Al-Amri, A..  2018.  Internet of Things (IoT) Increasing the Necessity to Adopt Specific Type of Access Control Technique. 2018 21st Saudi Computer Society National Computer Conference (NCC). :1–5.

The Internet of Things (IoT) is one of the emerging technologies that has seized the attention of researchers, the reason behind that was the IoT expected to be applied in our daily life in the near future and human will be wholly dependent on this technology for comfort and easy life style. Internet of things is the interconnection of internet enabled things or devices to connect with each other and to humans in order to achieve some goals or the ability of everyday objects to connect to the Internet and to send and receive data. However, the Internet of Things (IoT) raises significant challenges that could stand in the way of realizing its potential benefits. This paper discusses access control area as one of the most crucial aspect of security and privacy in IoT and proposing a new way of access control that would decide who is allowed to access what and who is not to the IoT subjects and sensors.

Celia, L., Cungang, Y..  2018.  (WIP) Authenticated Key Management Protocols for Internet of Things. 2018 IEEE International Congress on Internet of Things (ICIOT). :126–129.

The Internet of Things (IoT) provides transparent and seamless incorporation of heterogeneous and different end systems. It has been widely used in many applications such as smart homes. However, people may resist the IOT as long as there is no public confidence that it will not cause any serious threats to their privacy. Effective secure key management for things authentication is the prerequisite of security operations. In this paper, we present an interactive key management protocol and a non-interactive key management protocol to minimize the communication cost of the things. The security analysis show that the proposed schemes are resilient to various types of attacks.

2019-05-08
Balogun, A. M., Zuva, T..  2018.  Criminal Profiling in Digital Forensics: Assumptions, Challenges and Probable Solution. 2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC). :1–7.

Cybercrime has been regarded understandably as a consequent compromise that follows the advent and perceived success of the computer and internet technologies. Equally effecting the privacy, trust, finance and welfare of the wealthy and low-income individuals and organizations, this menace has shown no indication of slowing down. Reports across the world have consistently shown exponential increase in the numbers and costs of cyber-incidents, and more worriedly low conviction rates of cybercriminals, over the years. Stakeholders increasingly explore ways to keep up with containing cyber-incidents by devising tools and techniques to increase the overall efficiency of investigations, but the gap keeps getting wider. However, criminal profiling - an investigative technique that has been proven to provide accurate and valuable directions to traditional crime investigations - has not seen a widespread application, including a formal methodology, to cybercrime investigations due to difficulties in its seamless transference. This paper, in a bid to address this problem, seeks to preliminarily identify the exact benefits criminal profiling has brought to successful traditional crime investigations and the benefits it can translate to cybercrime investigations, identify the challenges posed by the cyber-scene to its implementation in cybercrime investigations, and proffer a practicable solution.

2019-05-01
Chen, D., Chen, W., Chen, J., Zheng, P., Huang, J..  2018.  Edge Detection and Image Segmentation on Encrypted Image with Homomorphic Encryption and Garbled Circuit. 2018 IEEE International Conference on Multimedia and Expo (ICME). :1-6.

Edge detection is one of the most important topics of image processing. In the scenario of cloud computing, performing edge detection may also consider privacy protection. In this paper, we propose an edge detection and image segmentation scheme on an encrypted image with Sobel edge detector. We implement Gaussian filtering and Sobel operator on the image in the encrypted domain with homomorphic property. By implementing an adaptive threshold decision algorithm in the encrypted domain, we obtain a threshold determined by the image distribution. With the technique of garbled circuit, we perform comparison in the encrypted domain and obtain the edge of the image without decrypting the image in advanced. We then propose an image segmentation scheme on the encrypted image based on the detected edges. Our experiments demonstrate the viability and effectiveness of the proposed encrypted image edge detection and segmentation.

2019-04-05
Vastel, A., Rudametkin, W., Rouvoy, R..  2018.  FP -TESTER : Automated Testing of Browser Fingerprint Resilience. 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :103-107.
Despite recent regulations and growing user awareness, undesired browser tracking is increasing. In addition to cookies, browser fingerprinting is a stateless technique that exploits a device's configuration for tracking purposes. In particular, browser fingerprinting builds on attributes made available from Javascript and HTTP headers to create a unique and stable fingerprint. For example, browser plugins have been heavily exploited by state-of-the-art browser fingerprinters as a rich source of entropy. However, as browser vendors abandon plugins in favor of extensions, fingerprinters will adapt. We present FP-TESTER, an approach to automatically test the effectiveness of browser fingerprinting countermeasure extensions. We implement a testing toolkit to be used by developers to reduce browser fingerprintability. While countermeasures aim to hinder tracking by changing or blocking attributes, they may easily introduce subtle side-effects that make browsers more identifiable, rendering the extensions counterproductive. FP-TESTER reports on the side-effects introduced by the countermeasure, as well as how they impact tracking duration from a fingerprinter's point-of-view. To the best of our knowledge, FP-TESTER is the first tool to assist developers in fighting browser fingerprinting and reducing the exposure of end-users to such privacy leaks.
Vastel, A., Laperdrix, P., Rudametkin, W., Rouvoy, R..  2018.  FP-STALKER: Tracking Browser Fingerprint Evolutions. 2018 IEEE Symposium on Security and Privacy (SP). :728-741.
Browser fingerprinting has emerged as a technique to track users without their consent. Unlike cookies, fingerprinting is a stateless technique that does not store any information on devices, but instead exploits unique combinations of attributes handed over freely by browsers. The uniqueness of fingerprints allows them to be used for identification. However, browser fingerprints change over time and the effectiveness of tracking users over longer durations has not been properly addressed. In this paper, we show that browser fingerprints tend to change frequently-from every few hours to days-due to, for example, software updates or configuration changes. Yet, despite these frequent changes, we show that browser fingerprints can still be linked, thus enabling long-term tracking. FP-STALKER is an approach to link browser fingerprint evolutions. It compares fingerprints to determine if they originate from the same browser. We created two variants of FP-STALKER, a rule-based variant that is faster, and a hybrid variant that exploits machine learning to boost accuracy. To evaluate FP-STALKER, we conduct an empirical study using 98,598 fingerprints we collected from 1, 905 distinct browser instances. We compare our algorithm with the state of the art and show that, on average, we can track browsers for 54.48 days, and 26 % of browsers can be tracked for more than 100 days.
2019-03-28
Costantino, G., Marra, A. La, Martinelli, F., Mori, P., Saracino, A..  2018.  Privacy Preserving Distributed Computation of Private Attributes for Collaborative Privacy Aware Usage Control Systems. 2018 IEEE International Conference on Smart Computing (SMARTCOMP). :315-320.

Collaborative smart services provide functionalities which exploit data collected from different sources to provide benefits to a community of users. Such data, however, might be privacy sensitive and their disclosure has to be avoided. In this paper, we present a distributed multi-tier framework intended for smart-environment management, based on usage control for policy evaluation and enforcement on devices belonging to different collaborating entities. The proposed framework exploits secure multi-party computation to evaluate policy conditions without disclosing actual value of evaluated attributes, to preserve privacy. As reference example, a smart-grid use case is presented.

Ambassa, P. L., Kayem, A. V. D. M., Wolthusen, S. D., Meinel, C..  2018.  Privacy Risks in Resource Constrained Smart Micro-Grids. 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA). :527-532.

In rural/remote areas, resource constrained smart micro-grid (RCSMG) architectures can offer a cost-effective power management and supply alternative to national power grid connections. RCSMG architectures handle communications over distributed lossy networks to minimize operation costs. However, the unreliable nature of lossy networks makes privacy an important consideration. Existing anonymisation works on data perturbation work mainly by distortion with additive noise. Apply these solutions to RCSMGs is problematic, because deliberate noise additions must be distinguishable both from system and adversarial generated noise. In this paper, we present a brief survey of privacy risks in RCSMGs centered on inference, and propose a method of mitigating these risks. The lesson here is that while RCSMGs give users more control over power management and distribution, good anonymisation is essential to protecting personal information on RCSMGs.

Wen, M., Yao, D., Li, B., Lu, R..  2018.  State Estimation Based Energy Theft Detection Scheme with Privacy Preservation in Smart Grid. 2018 IEEE International Conference on Communications (ICC). :1-6.

The increasing deployment of smart meters at individual households has significantly improved people's experience in electricity bill payments and energy savings. It is, however, still challenging to guarantee the accurate detection of attacked meters' behaviors as well as the effective preservation of users'privacy information. In addition, rare existing research studies jointly consider both these two aspects. In this paper, we propose a Privacy-Preserving energy Theft Detection scheme (PPTD) to address the energy theft behaviors and information privacy issues in smart grid. Specifically, we use a recursive filter based on state estimation to estimate the user's energy consumption, and detect the abnormal data. During data transmission, we use the lightweight NTRU algorithm to encrypt the user's data to achieve privacy preservation. Security analysis demonstrates that in the PPTD scheme, only authorized units can transmit/receive data, and data privacy are also preserved. The performance evaluation results illustrate that our PPTD scheme can significantly reduce the communication and computation costs, and effectively detect abnormal users.

He, Z., Pan, S., Lin, D..  2018.  PMDA: Privacy-Preserving Multi-Functional Data Aggregation Without TTP in Smart Grid. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1107-1114.

In the smart grid, residents' electricity usage needs to be periodically measured and reported for the purpose of better energy management. At the same time, real-time collection of residents' electricity consumption may unfavorably incur privacy leakage, which has motivated the research on privacy-preserving aggregation of electricity readings. Most previous studies either rely on a trusted third party (TTP) or suffer from expensive computation. In this paper, we first reveal the privacy flaws of a very recent scheme pursing privacy preservation without relying on the TTP. By presenting concrete attacks, we show that this scheme has failed to meet the design goals. Then, for better privacy protection, we construct a new scheme called PMDA, which utilizes Shamir's secret sharing to allow smart meters to negotiate aggregation parameters in the absence of a TTP. Using only lightweight cryptography, PMDA efficiently supports multi-functional aggregation of the electricity readings, and simultaneously preserves residents' privacy. Theoretical analysis is provided with regard to PMDA's security and efficiency. Moreover, experimental data obtained from a prototype indicates that our proposal is efficient and feasible for practical deployment.

Bagri, D., Rathore, S. K..  2018.  Research Issues Based on Comparative Work Related to Data Security and Privacy Preservation in Smart Grid. 2018 4th International Conference on Computing Sciences (ICCS). :88-91.

With the advancement of Technology, the existing electric grids are shifting towards smart grid. The smart grids are meant to be effective in power management, secure and safe in communication and more importantly, it is favourable to the environment. The smart grid is having huge architecture it includes various stakeholders that encounter challenges in the name of authorisation and authentication. The smart grid has another important issue to deal with that is securing the communication from varieties of cyber-attacks. In this paper, we first discussed about the challenges in the smart grid data communication and later we surveyed the existing cryptographic algorithm and presented comparative work on certain factors for existing working cryptographic algorithms This work gives insight conclusion to improve the working scheme for data security and Privacy preservation of customer who is one of the stack holders. Finally, with the comparative work, we suggest a direction of future work on improvement of working algorithms for secure and safe data communication in a smart grid.

McDermott, C. D., Petrovski, A. V., Majdani, F..  2018.  Towards Situational Awareness of Botnet Activity in the Internet of Things. 2018 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1-8.
The following topics are dealt with: security of data; risk management; decision making; computer crime; invasive software; critical infrastructures; data privacy; insurance; Internet of Things; learning (artificial intelligence).