Visible to the public Biblio

Found 438 results

Filters: Keyword is Protocols  [Clear All Filters]
2019-11-19
Wang, Jiye, Sun, Yuyan, Miao, Siwei, Shi, Zhiqiang, Sun, Limin.  2018.  Vulnerability and Protocol Association of Device Firmware in Power Grid. 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS). :259-263.

The intelligent power grid is composed of a large number of industrial control equipment, and most of the industrial control equipment has security holes, which are vulnerable to malicious attacks and affect the normal operation of the power grid. By analyzing the security vulnerability of the firmware of industrial control equipment, the vulnerability can be detected in advance and the power grid's ability to resist attack can be improved. In this paper, a kind of industrial control device firmware protocol vulnerabilities associated technology, through the technology of information extraction from the mass grid device firmware device attributes and extract the industrial control system, the characteristics of the construction of industrial control system device firmware and published vulnerability information correlation, faster in the industrial control equipment safety inspection found vulnerabilities.

2019-11-18
Chowdhary, Ankur, Huang, Dijiang, Alshamrani, Adel, Kang, Myong, Kim, Anya, Velazquez, Alexander.  2019.  TRUFL: Distributed Trust Management Framework in SDN. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Software Defined Networking (SDN) has emerged as a revolutionary paradigm to manage cloud infrastructure. SDN lacks scalable trust setup and verification mechanism between Data Plane-Control Plane elements, Control Plane elements, and Control Plane-Application Plane. Trust management schemes like Public Key Infrastructure (PKI) used currently in SDN are slow for trust establishment in a larger cloud environment. We propose a distributed trust mechanism - TRUFL to establish and verify trust in SDN. The distributed framework utilizes parallelism in trust management, in effect faster transfer rates and reduced latency compared to centralized trust management. The TRUFL framework scales well with the number of OpenFlow rules when compared to existing research works.
Singla, Ankush, Bertino, Elisa.  2018.  Blockchain-Based PKI Solutions for IoT. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). :9–15.
Traditionally, a Certification Authority (CA) is required to sign, manage, verify and revoke public key certificates. Multiple CAs together form the CA-based Public Key Infrastructure (PKI). The use of a PKI forces one to place trust in the CAs, which have proven to be a single point-of-failure on multiple occasions. Blockchain has emerged as a transformational technology that replaces centralized trusted third parties with a decentralized, publicly verifiable, peer-to-peer data store which maintains data integrity among nodes through various consensus protocols. In this paper, we deploy three blockchain-based alternatives to the CA-based PKI for supporting IoT devices, based on Emercoin Name Value Service (NVS), smart contracts by Ethereum blockchain, and Ethereum Light Sync client. We compare these approaches with CA-based PKI and show that they are much more efficient in terms of computational and storage requirements in addition to providing a more robust and scalable PKI.
Ahmed, Abu Shohel, Aura, Tuomas.  2018.  Turning Trust Around: Smart Contract-Assisted Public Key Infrastructure. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :104–111.
In past, several Certificate Authority (CA) compromise and subsequent mis-issue of certificate raise the importance of certificate transparency and dynamic trust management for certificates. Certificate Transparency (CT) provides transparency for issued certificates, thus enabling corrective measure for a mis-issued certificate by a CA. However, CT and existing mechanisms cannot convey the dynamic trust state for a certificate. To address this weakness, we propose Smart Contract-assisted PKI (SCP) - a smart contract based PKI extension - to manage dynamic trust network for PKI. SCP enables distributed trust in PKI, provides a protocol for managing dynamic trust, assures trust state of a certificate, and provides a better trust experience for end-users.
2019-11-12
Dreier, Jannik, Hirschi, Lucca, Radomirovic, Sasa, Sasse, Ralf.  2018.  Automated Unbounded Verification of Stateful Cryptographic Protocols with Exclusive OR. 2018 IEEE 31st Computer Security Foundations Symposium (CSF). :359-373.

Exclusive-or (XOR) operations are common in cryptographic protocols, in particular in RFID protocols and electronic payment protocols. Although there are numerous applications, due to the inherent complexity of faithful models of XOR, there is only limited tool support for the verification of cryptographic protocols using XOR. The Tamarin prover is a state-of-the-art verification tool for cryptographic protocols in the symbolic model. In this paper, we improve the underlying theory and the tool to deal with an equational theory modeling XOR operations. The XOR theory can be freely combined with all equational theories previously supported, including user-defined equational theories. This makes Tamarin the first tool to support simultaneously this large set of equational theories, protocols with global mutable state, an unbounded number of sessions, and complex security properties including observational equivalence. We demonstrate the effectiveness of our approach by analyzing several protocols that rely on XOR, in particular multiple RFID-protocols, where we can identify attacks as well as provide proofs.

Padon, Oded.  2018.  Deductive Verification of Distributed Protocols in First-Order Logic. 2018 Formal Methods in Computer Aided Design (FMCAD). :1-1.

Formal verification of infinite-state systems, and distributed systems in particular, is a long standing research goal. In the deductive verification approach, the programmer provides inductive invariants and pre/post specifications of procedures, reducing the verification problem to checking validity of logical verification conditions. This check is often performed by automated theorem provers and SMT solvers, substantially increasing productivity in the verification of complex systems. However, the unpredictability of automated provers presents a major hurdle to usability of these tools. This problem is particularly acute in case of provers that handle undecidable logics, for example, first-order logic with quantifiers and theories such as arithmetic. The resulting extreme sensitivity to minor changes has a strong negative impact on the convergence of the overall proof effort.

Mahale, Anusha, B.S., Kariyappa.  2019.  Architecture Analysis and Verification of I3C Protocol. 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA). :930-935.

In VLSI industry the design cycle is categorized into Front End Design and Back End Design. Front End Design flow is from Specifications to functional verification of RTL design. Back End Design is from logic synthesis to fabrication of chip. Handheld devices like Mobile SOC's is an amalgamation of many components like GPU, camera, sensor, display etc. on one single chip. In order to integrate these components protocols are needed. One such protocol in the emerging trend is I3C protocol. I3C is abbreviated as Improved Inter Integrated Circuit developed by Mobile Industry Processor Interface (MIPI) alliance. Most probably used for the interconnection of sensors in Mobile SOC's. The main motivation of adapting the standard is for the increase speed and low pin count in most of the hardware chips. The bus protocol is backward compatible with I2C devices. The paper includes detailed study I3C bus protocol and developing verification environment for the protocol. The test bench environment is written and verified using system Verilog and UVM. The Universal Verification Methodology (UVM) is base class library built using System Verilog which provides the fundamental blocks needed to quickly develop reusable and well-constructed verification components and test environments. The Functional Coverage of around 93.55 % and Code Coverage of around 98.89 % is achieved by verification closure.

Luo, Qiming, Lv, Ang, Hou, Ligang, Wang, Zhongchao.  2018.  Realization of System Verification Platform of IoT Smart Node Chip. 2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems (ICICM). :341-344.

With the development of large scale integrated circuits, the functions of the IoT chips have been increasingly perfect. The verification work has become one of the most important aspects. On the one hand, an efficient verification platform can ensure the correctness of the design. On the other hand, it can shorten the chip design cycle and reduce the design cost. In this paper, based on a transmission protocol of the IoT node, we propose a verification method which combines simulation verification and FPGA-based prototype verification. We also constructed a system verification platform for the IoT smart node chip combining two kinds of verification above. We have simulated and verificatied the related functions of the node chip using this platform successfully. It has a great reference value.

Hu, Yayun, Li, Dongfang.  2019.  Formal Verification Technology for Asynchronous Communication Protocol. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :482-486.

For aerospace FPGA software products, traditional simulation method faces severe challenges to verify product requirements under complicated scenarios. Given the increasing maturity of formal verification technology, this method can significantly improve verification work efficiency and product design quality, by expanding coverage on those "blind spots" in product design which were not easily identified previously. Taking UART communication as an example, this paper proposes several critical points to use formal verification for asynchronous communication protocol. Experiments and practices indicate that formal verification for asynchronous communication protocol can effectively reduce the time required, ensure a complete verification process and more importantly, achieve more accurate and intuitive results.

E.V., Jaideep Varier, V., Prabakar, Balamurugan, Karthigha.  2019.  Design of Generic Verification Procedure for IIC Protocol in UVM. 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA). :1146-1150.

With the growth of technology, designs became more complex and may contain bugs. This makes verification an indispensable part in product development. UVM describe a standard method for verification of designs which is reusable and portable. This paper verifies IIC bus protocol using Universal Verification Methodology. IIC controller is designed in Verilog using Vivado. It have APB interface and its function and code coverage is carried out in Mentor graphic Questasim 10.4e. This work achieved 83.87% code coverage and 91.11% functional coverage.

Vizarreta, Petra, Sakic, Ermin, Kellerer, Wolfgang, Machuca, Carmen Mas.  2019.  Mining Software Repositories for Predictive Modelling of Defects in SDN Controller. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :80-88.

In Software Defined Networking (SDN) control plane of forwarding devices is concentrated in the SDN controller, which assumes the role of a network operating system. Big share of today's commercial SDN controllers are based on OpenDaylight, an open source SDN controller platform, whose bug repository is publicly available. In this article we provide a first insight into 8k+ bugs reported in the period over five years between March 2013 and September 2018. We first present the functional components in OpenDaylight architecture, localize the most vulnerable modules and measure their contribution to the total bug content. We provide high fidelity models that can accurately reproduce the stochastic behaviour of bug manifestation and bug removal rates, and discuss how these can be used to optimize the planning of the test effort, and to improve the software release management. Finally, we study the correlation between the code internals, derived from the Git version control system, and software defect metrics, derived from Jira issue tracker. To the best of our knowledge, this is the first study to provide a comprehensive analysis of bug characteristics in a production grade SDN controller.

2019-10-30
Ghose, Nirnimesh, Lazos, Loukas, Li, Ming.  2018.  Secure Device Bootstrapping Without Secrets Resistant to Signal Manipulation Attacks. 2018 IEEE Symposium on Security and Privacy (SP). :819-835.
In this paper, we address the fundamental problem of securely bootstrapping a group of wireless devices to a hub, when none of the devices share prior associations (secrets) with the hub or between them. This scenario aligns with the secure deployment of body area networks, IoT, medical devices, industrial automation sensors, autonomous vehicles, and others. We develop VERSE, a physical-layer group message integrity verification primitive that effectively detects advanced wireless signal manipulations that can be used to launch man-in-the-middle (MitM) attacks over wireless. Without using shared secrets to establish authenticated channels, such attacks are notoriously difficult to thwart and can undermine the authentication and key establishment processes. VERSE exploits the existence of multiple devices to verify the integrity of the messages exchanged within the group. We then use VERSE to build a bootstrapping protocol, which securely introduces new devices to the network. Compared to the state-of-the-art, VERSE achieves in-band message integrity verification during secure pairing using only the RF modality without relying on out-of-band channels or extensive human involvement. It guarantees security even when the adversary is capable of fully controlling the wireless channel by annihilating and injecting wireless signals. We study the limits of such advanced wireless attacks and prove that the introduction of multiple legitimate devices can be leveraged to increase the security of the pairing process. We validate our claims via theoretical analysis and extensive experimentations on the USRP platform. We further discuss various implementation aspects such as the effect of time synchronization between devices and the effects of multipath and interference. Note that the elimination of shared secrets, default passwords, and public key infrastructures effectively addresses the related key management challenges when these are considered at scale.
2019-10-23
Madala, D S V, Jhanwar, Mahabir Prasad, Chattopadhyay, Anupam.  2018.  Certificate Transparency Using Blockchain. 2018 IEEE International Conference on Data Mining Workshops (ICDMW). :71-80.

The security of web communication via the SSL/TLS protocols relies on safe distributions of public keys associated with web domains in the form of X.509 certificates. Certificate authorities (CAs) are trusted third parties that issue these certificates. However, the CA ecosystem is fragile and prone to compromises. Starting with Google's Certificate Transparency project, a number of research works have recently looked at adding transparency for better CA accountability, effectively through public logs of all certificates issued by certification authorities, to augment the current X.509 certificate validation process into SSL/TLS. In this paper, leveraging recent progress in blockchain technology, we propose a novel system, called CTB, that makes it impossible for a CA to issue a certificate for a domain without obtaining consent from the domain owner. We further make progress to equip CTB with certificate revocation mechanism. We implement CTB using IBM's Hyperledger Fabric blockchain platform. CTB's smart contract, written in Go, is provided for complete reference.

Szalachowski, Pawel.  2018.  (Short Paper) Towards More Reliable Bitcoin Timestamps. 2018 Crypto Valley Conference on Blockchain Technology (CVCBT). :101-104.

Bitcoin provides freshness properties by forming a blockchain where each block is associated with its timestamp and the previous block. Due to these properties, the Bitcoin protocol is being used as a decentralized, trusted, and secure timestamping service. Although Bitcoin participants which create new blocks cannot modify their order, they can manipulate timestamps almost undetected. This undermines the Bitcoin protocol as a reliable timestamping service. In particular, a newcomer that synchronizes the entire blockchain has a little guarantee about timestamps of all blocks. In this paper, we present a simple yet powerful mechanism that increases the reliability of Bitcoin timestamps. Our protocol can provide evidence that a block was created within a certain time range. The protocol is efficient, backward compatible, and surprisingly, currently deployed SSL/TLS servers can act as reference time sources. The protocol has many applications and can be used for detecting various attacks against the Bitcoin protocol.

Chen, Jing, Yao, Shixiong, Yuan, Quan, He, Kun, Ji, Shouling, Du, Ruiying.  2018.  CertChain: Public and Efficient Certificate Audit Based on Blockchain for TLS Connections. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :2060-2068.

In recent years, real-world attacks against PKI take place frequently. For example, malicious domains' certificates issued by compromised CAs are widespread, and revoked certificates are still trusted by clients. In spite of a lot of research to improve the security of SSL/TLS connections, there are still some problems unsolved. On one hand, although log-based schemes provided certificate audit service to quickly detect CAs' misbehavior, the security and data consistency of log servers are ignored. On the other hand, revoked certificates checking is neglected due to the incomplete, insecure and inefficient certificate revocation mechanisms. Further, existing revoked certificates checking schemes are centralized which would bring safety bottlenecks. In this paper, we propose a blockchain-based public and efficient audit scheme for TLS connections, which is called Certchain. Specially, we propose a dependability-rank based consensus protocol in our blockchain system and a new data structure to support certificate forward traceability. Furthermore, we present a method that utilizes dual counting bloom filter (DCBF) with eliminating false positives to achieve economic space and efficient query for certificate revocation checking. The security analysis and experimental results demonstrate that CertChain is suitable in practice with moderate overhead.

2019-10-15
Detken, K., Jahnke, M., Humann, M., Rollgen, B..  2018.  Integrity and Non-Repudiation of VoIP Streams with TPM2.0 over Wi-Fi Networks. 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS). :82–87.
The complete digitization of telecommunications allows new attack scenarios, which have not been possible with legacy phone technologies before. The reason is that physical access to legacy phone technologies was necessary. Regarding internet-based communication like voice over the internet protocol (VoIP), which can be established between random nodes, eavesdropping can happen everywhere and much easier. Additionally, injection of undesirable communication like SPAM or SPIT in digital networks is simpler, too. Encryption is not sufficient because it is also necessary to know which participants are talking to each other. For that reason, the research project INTEGER has been started with the main goals of providing secure authentication and integrity of a VoIP communication by using a digital signature. The basis of this approach is the Trusted Platform Module (TPM) of the Trusted Computing Group (TCG) which works as a hardware-based trusted anchor. The TPM will be used inside of wireless IP devices with VoIP softphones. The question is if it is possible to fulfill the main goals of the project in wireless scenarios with Wi-Fi technologies. That is what this contribution aims to clarify.
2019-10-08
Kim, S., Jin, S., Lee, Y., Park, B., Kim, H., Hong, S..  2018.  Single Trace Side Channel Analysis on Quantum Key Distribution. 2018 International Conference on Information and Communication Technology Convergence (ICTC). :736–739.

The security of current key exchange protocols such as Diffie-Hellman key exchange is based on the hardness of number theoretic problems. However, these key exchange protocols are threatened by weak random number generators, advances to CPU power, a new attack from the eavesdropper, and the emergence of a quantum computer. Quantum Key Distribution (QKD) addresses these challenges by using quantum properties to exchange a secret key without the risk of being intercepted. Recent developments on the QKD system resulted in a stable key generation with fewer errors so that the QKD system is rapidly becoming a solid commercial proposition. However, although the security of the QKD system is guaranteed by quantum physics, its careless implementation could make the system vulnerable. In this paper, we proposed the first side-channel attack on plug-and-play QKD system. Through a single electromagnetic trace obtained from the phase modulator on Alice's side, we were able to classify the electromagnetic trace into four classes, which corresponds to the number of bit and basis combination in the BB84 protocol. We concluded that the plug-and-play QKD system is vulnerable to side-channel attack so that the countermeasure must be considered.

Rahman, M. S., Hossam-E-Haider, M..  2019.  Quantum IoT: A Quantum Approach in IoT Security Maintenance. 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST). :269–272.

Securing Internet of things is a major concern as it deals with data that are personal, needed to be reliable, can direct and manipulate device decisions in a harmful way. Also regarding data generation process is heterogeneous, data being immense in volume, complex management. Quantum Computing and Internet of Things (IoT) coined as Quantum IoT defines a concept of greater security design which harness the virtue of quantum mechanics laws in Internet of Things (IoT) security management. Also it ensures secured data storage, processing, communication, data dynamics. In this paper, an IoT security infrastructure is introduced which is a hybrid one, with an extra layer, which ensures quantum state. This state prevents any sort of harmful actions from the eavesdroppers in the communication channel and cyber side, by maintaining its state, protecting the key by quantum cryptography BB84 protocol. An adapted version is introduced specific to this IoT scenario. A classical cryptography system `One-Time pad (OTP)' is used in the hybrid management. The novelty of this paper lies with the integration of classical and quantum communication for Internet of Things (IoT) security.

2019-10-02
Wang, S., Zhu, S., Zhang, Y..  2018.  Blockchain-Based Mutual Authentication Security Protocol for Distributed RFID Systems. 2018 IEEE Symposium on Computers and Communications (ISCC). :00074–00077.

Since radio frequency identification (RFID) technology has been used in various scenarios such as supply chain, access control system and credit card, tremendous efforts have been made to improve the authentication between tags and readers to prevent potential attacks. Though effective in certain circumstances, these existing methods usually require a server to maintain a database of identity related information for every tag, which makes the system vulnerable to the SQL injection attack and not suitable for distributed environment. To address these problems, we now propose a novel blockchain-based mutual authentication security protocol. In this new scheme, there is no need for the trusted third parties to provide security and privacy for the system. Authentication is executed as an unmodifiable transaction based on blockchain rather than database, which applies to distributed RFID systems with high security demand and relatively low real-time requirement. Analysis shows that our protocol is logically correct and can prevent multiple attacks.

Cherneva, V., Trahan, J..  2019.  A Secure and Efficient Parallel-Dependency RFID Grouping-Proof Protocol. 2019 IEEE International Conference on RFID (RFID). :1–8.

In this time of ubiquitous computing and the evolution of the Internet of Things (IoT), the deployment and development of Radio Frequency Identification (RFID) is becoming more extensive. Proving the simultaneous presence of a group of RFID tagged objects is a practical need in many application areas within the IoT domain. Security, privacy, and efficiency are central issues when designing such a grouping-proof protocol. This work is motivated by our serial-dependent and Sundaresan et al.'s grouping-proof protocols. In this paper, we propose a light, improved offline protocol: parallel-dependency grouping-proof protocol (PDGPP). The protocol focuses on security, privacy, and efficiency. PDGPP tackles the challenges of including robust privacy mechanisms and accommodates missing tags. It is scalable and complies with EPC C1G2.

Sharma, V., Vithalkar, A., Hashmi, M..  2018.  Lightweight Security Protocol for Chipless RFID in Internet of Things (IoT) Applications. 2018 10th International Conference on Communication Systems Networks (COMSNETS). :468–471.

The RFID based communication between objects within the framework of IoT is potentially very efficient in terms of power requirements and system complexity. The new design incorporating the emerging chipless RFID tags has the potential to make the system more efficient and simple. However, these systems are prone to privacy and security risks and these challenges associated with such systems have not been addressed appropriately in the broader IoT framework. In this context, a lightweight collision free algorithm based on n-bit pseudo random number generator, X-OR hash function, and rotations for chipless RFID system is presented. The algorithm has been implemented on an 8-bit open-loop resonator based chipless RFID tag based system and is validated using BASYS 2 FPGA board based platform. The proposed scheme has been shown to possess security against various attacks such as Denial of Service (DoS), tag/reader anonymity, and tag impersonation.

Sharma, V., Malhotra, S., Hashmi, M..  2018.  An Emerging Application Centric RFID Framework Based on New Web Technology. 2018 IEEE International Conference on RFID Technology Application (RFID-TA). :1–6.

In the context of emerging applications such as IoT, an RFID framework that can dynamically incorporate, identify, and seamlessly regulate the RFID tags is considered exciting. Earlier RFID frameworks developed using the older web technologies were limited in their ability to provide complete information about the RFID tags and their respective locations. However, the new and emerging web technologies have transformed this scenario and now framework can be developed to include all the required flexibility and security for seamless applications such as monitoring of RFID tags. This paper revisits and proposes a generic scenario of an RFID framework built using latest web technology and demonstrates its ability to customize using an application for tracking of personal user objects. This has been shown that the framework based on newer web technologies can be indeed robust, uniform, unified, and integrated.

2019-09-23
Babu, S., Markose, S..  2018.  IoT Enabled Robots with QR Code Based Localization. 2018 International Conference on Emerging Trends and Innovations In Engineering And Technological Research (ICETIETR). :1–5.

Robots are sophisticated form of IoT devices as they are smart devices that scrutinize sensor data from multiple sources and observe events to decide the best procedural actions to supervise and manoeuvre objects in the physical world. In this paper, localization of the robot is addressed by QR code Detection and path optimization is accomplished by Dijkstras algorithm. The robot can navigate automatically in its environment with sensors and shortest path is computed whenever heading measurements are updated with QR code landmark recognition. The proposed approach highly reduces computational burden and deployment complexity as it reflects the use of artificial intelligence to self-correct its course when required. An Encrypted communication channel is established over wireless local area network using SSHv2 protocol to transfer or receive sensor data(or commands) making it an IoT enabled Robot.

Eugster, P., Marson, G. A., Poettering, B..  2018.  A Cryptographic Look at Multi-party Channels. 2018 IEEE 31st Computer Security Foundations Symposium (CSF). :31–45.
Cryptographic channels aim to enable authenticated and confidential communication over the Internet. The general understanding seems to be that providing security in the sense of authenticated encryption for every (unidirectional) point-to-point link suffices to achieve this goal. As recently shown (in FSE17/ToSC17), however, the security properties of the unidirectional links do not extend, in general, to the bidirectional channel as a whole. Intuitively, the reason for this is that the increased interaction in bidirectional communication can be exploited by an adversary. The same applies, a fortiori, in a multi-party setting where several users operate concurrently and the communication develops in more directions. In the cryptographic literature, however, the targeted goals for group communication in terms of channel security are still unexplored. Applying the methodology of provable security, we fill this gap by defining exact (game-based) authenticity and confidentiality goals for broadcast communication, and showing how to achieve them. Importantly, our security notions also account for the causal dependencies between exchanged messages, thus naturally extending the bidirectional case where causal relationships are automatically captured by preserving the sending order. On the constructive side we propose a modular and yet efficient protocol that, assuming only point-to-point links between users, leverages (non-cryptographic) broadcast and standard cryptographic primitives to a full-fledged broadcast channel that provably meets the security notions we put forth.
Moon, J., Lee, Y., Yang, H., Song, T., Won, D..  2018.  Cryptanalysis of a privacy-preserving and provable user authentication scheme for wireless sensor networks based on Internet of Things security. 2018 International Conference on Information Networking (ICOIN). :432–437.
User authentication in wireless sensor networks is more complex than normal networks due to sensor network characteristics such as unmanned operation, limited resources, and unreliable communication. For this reason, various authentication protocols have been presented to provide secure and efficient communication. In 2017, Wu et al. presented a provable and privacy-preserving user authentication protocol for wireless sensor networks. Unfortunately, we found that Wu et al.'s protocol was still vulnerable against user impersonation attack, and had a problem in the password change phase. We show how an attacker can impersonate an other user and why the password change phase is ineffective.