Visible to the public Biblio

Found 408 results

Filters: Keyword is Protocols  [Clear All Filters]
2019-07-01
Kebande, V. R., Kigwana, I., Venter, H. S., Karie, N. M., Wario, R. D..  2018.  CVSS Metric-Based Analysis, Classification and Assessment of Computer Network Threats and Vulnerabilities. 2018 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD). :1–10.
This paper provides a Common Vulnerability Scoring System (CVSS) metric-based technique for classifying and analysing the prevailing Computer Network Security Vulnerabilities and Threats (CNSVT). The problem that is addressed in this paper, is that, at the time of writing this paper, there existed no effective approaches for analysing and classifying CNSVT for purposes of assessments based on CVSS metrics. The authors of this paper have achieved this by generating a CVSS metric-based dynamic Vulnerability Analysis Classification Countermeasure (VACC) criterion that is able to rank vulnerabilities. The CVSS metric-based VACC has allowed the computation of vulnerability Similarity Measure (VSM) using the Hamming and Euclidean distance metric functions. Nevertheless, the CVSS-metric based on VACC also enabled the random measuring of the VSM for a selected number of vulnerabilities based on the [Ma-Ma], [Ma-Mi], [Mi-Ci], [Ma-Ci] ranking score. This is a technique that is aimed at allowing security experts to be able to conduct proper vulnerability detection and assessments across computer-based networks based on the perceived occurrence by checking the probability that given threats will occur or not. The authors have also proposed high-level countermeasures of the vulnerabilities that have been listed. The authors have evaluated the CVSS-metric based VACC and the results are promising. Based on this technique, it is worth noting that these propositions can help in the development of stronger computer and network security tools.
Perez, R. Lopez, Adamsky, F., Soua, R., Engel, T..  2018.  Machine Learning for Reliable Network Attack Detection in SCADA Systems. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :633–638.

Critical Infrastructures (CIs) use Supervisory Control And Data Acquisition (SCADA) systems for remote control and monitoring. Sophisticated security measures are needed to address malicious intrusions, which are steadily increasing in number and variety due to the massive spread of connectivity and standardisation of open SCADA protocols. Traditional Intrusion Detection Systems (IDSs) cannot detect attacks that are not already present in their databases. Therefore, in this paper, we assess Machine Learning (ML) for intrusion detection in SCADA systems using a real data set collected from a gas pipeline system and provided by the Mississippi State University (MSU). The contribution of this paper is two-fold: 1) The evaluation of four techniques for missing data estimation and two techniques for data normalization, 2) The performances of Support Vector Machine (SVM), and Random Forest (RF) are assessed in terms of accuracy, precision, recall and F1score for intrusion detection. Two cases are differentiated: binary and categorical classifications. Our experiments reveal that RF detect intrusions effectively, with an F1score of respectively \textbackslashtextgreater 99%.

Modi, F. M., Desai, M. R., Soni, D. R..  2018.  A Third Party Audit Mechanism for Cloud Based Storage Using File Versioning and Change Tracking Mechanism. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA). :521-523.

Cloud storage is an exclusive resource in cloud computing, which helps to store and share the data on cloud storage server. Clients upload the data and its hash information n server together on cloud storage. The file owner always concern about data security like privacy and unauthorized access to third party. The owner also wants to ensure the integrity data during communication process. To ensure integrity, we propose a framework based on third party auditor which checks the integrity and correctness of data during audit process. Our aim is to design custom hash for the file which is not only justifies the integrity but also version information about file.

2019-06-24
Okay, F. Y., Ozdemir, S..  2018.  A secure data aggregation protocol for fog computing based smart grids. 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018). :1–6.

In Smart Grids (SGs), data aggregation process is essential in terms of limiting packet size, data transmission amount and data storage requirements. This paper presents a novel Domingo-Ferrer additive privacy based Secure Data Aggregation (SDA) scheme for Fog Computing based SGs (FCSG). The proposed protocol achieves end-to-end confidentiality while ensuring low communication and storage overhead. Data aggregation is performed at fog layer to reduce the amount of data to be processed and stored at cloud servers. As a result, the proposed protocol achieves better response time and less computational overhead compared to existing solutions. Moreover, due to hierarchical architecture of FCSG and additive homomorphic encryption consumer privacy is protected from third parties. Theoretical analysis evaluates the effects of packet size and number of packets on transmission overhead and the amount of data stored in cloud server. In parallel with the theoretical analysis, our performance evaluation results show that there is a significant improvement in terms of data transmission and storage efficiency. Moreover, security analysis proves that the proposed scheme successfully ensures the privacy of collected data.

Mohammad, Z., Qattam, T. A., Saleh, K..  2019.  Security Weaknesses and Attacks on the Internet of Things Applications. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :431–436.

Internet of Things (IoT) is a contemporary concept for connecting the existing things in our environment with the Internet for a sake of making the objects information are accessible from anywhere and anytime to support a modern life style based on the Internet. With the rapid development of the IoT technologies and widely spreading in most of the fields such as buildings, health, education, transportation and agriculture. Thus, the IoT applications require increasing data collection from the IoT devices to send these data to the applications or servers which collect or analyze the data, so it is a very important to secure the data and ensure that do not reach a malicious adversary. This paper reviews some attacks in the IoT applications and the security weaknesses in the IoT environment. In addition, this study presents the challenges of IoT in terms of hardware, network and software. Moreover, this paper summarizes and points to some attacks on the smart car, smart home, smart campus, smart farm and healthcare.

Gupta, D. S., Biswas, G. P., Nandan, R..  2018.  Security weakness of a lattice-based key exchange protocol. 2018 4th International Conference on Recent Advances in Information Technology (RAIT). :1–5.

A key exchange protocol is an important primitive in the field of information and network security and is used to exchange a common secret key among various parties. A number of key exchange protocols exist in the literature and most of them are based on the Diffie-Hellman (DH) problem. But, these DH type protocols cannot resist to the modern computing technologies like quantum computing, grid computing etc. Therefore, a more powerful non-DH type key exchange protocol is required which could resist the quantum and exponential attacks. In the year 2013, Lei and Liao, thus proposed a lattice-based key exchange protocol. Their protocol was related to the NTRU-ENCRYPT and NTRU-SIGN and so, was referred as NTRU-KE. In this paper, we identify that NTRU-KE lacks the authentication mechanism and suffers from the man-in-the-middle (MITM) attack. This attack may lead to the forging the authenticated users and exchanging the wrong key.

2019-06-17
Shif, L., Wang, F., Lung, C..  2018.  Improvement of security and scalability for IoT network using SD-VPN. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1–5.

The growing interest in the smart device/home/city has resulted in increasing popularity of Internet of Things (IoT) deployment. However, due to the open and heterogeneous nature of IoT networks, there are various challenges to deploy an IoT network, among which security and scalability are the top two to be addressed. To improve the security and scalability for IoT networks, we propose a Software-Defined Virtual Private Network (SD-VPN) solution, in which each IoT application is allocated with its own overlay VPN. The VPN tunnels used in this paper are VxLAN based tunnels and we propose to use the SDN controller to push the flow table of each VPN to the related OpenvSwitch via the OpenFlow protocol. The SD-VPN solution can improve the security of an IoT network by separating the VPN traffic and utilizing service chaining. Meanwhile, it also improves the scalability by its overlay VPN nature and the VxLAN technology.

2019-06-10
Jiang, J., Yin, Q., Shi, Z., Li, M..  2018.  Comprehensive Behavior Profiling Model for Malware Classification. 2018 IEEE Symposium on Computers and Communications (ISCC). :00129-00135.

In view of the great threat posed by malware and the rapid growing trend about malware variants, it is necessary to determine the category of new samples accurately for further analysis and taking appropriate countermeasures. The network behavior based classification methods have become more popular now. However, the behavior profiling models they used usually only depict partial network behavior of samples or require specific traffic selection in advance, which may lead to adverse effects on categorizing advanced malware with complex activities. In this paper, to overcome the shortages of traditional models, we raise a comprehensive behavior model for profiling the behavior of malware network activities. And we also propose a corresponding malware classification method which can extract and compare the major behavior of samples. The experimental and comparison results not only demonstrate our method can categorize samples accurately in both criteria, but also prove the advantage of our profiling model to two other approaches in accuracy performance, especially under scenario based criteria.

Debatty, T., Mees, W., Gilon, T..  2018.  Graph-Based APT Detection. 2018 International Conference on Military Communications and Information Systems (ICMCIS). :1-8.

In this paper we propose a new algorithm to detect Advanced Persistent Threats (APT's) that relies on a graph model of HTTP traffic. We also implement a complete detection system with a web interface that allows to interactively analyze the data. We perform a complete parameter study and experimental evaluation using data collected on a real network. The results show that the performance of our system is comparable to currently available antiviruses, although antiviruses use signatures to detect known malwares while our algorithm solely uses behavior analysis to detect new undocumented attacks.

Ponmaniraj, S., Rashmi, R., Anand, M. V..  2018.  IDS Based Network Security Architecture with TCP/IP Parameters Using Machine Learning. 2018 International Conference on Computing, Power and Communication Technologies (GUCON). :111-114.

This computer era leads human to interact with computers and networks but there is no such solution to get rid of security problems. Securities threats misleads internet, we are sometimes losing our hope and reliability with many server based access. Even though many more crypto algorithms are coming for integrity and authentic data in computer access still there is a non reliable threat penetrates inconsistent vulnerabilities in networks. These vulnerable sites are taking control over the user's computer and doing harmful actions without user's privileges. Though Firewalls and protocols may support our browsers via setting certain rules, still our system couldn't support for data reliability and confidentiality. Since these problems are based on network access, lets we consider TCP/IP parameters as a dataset for analysis. By doing preprocess of TCP/IP packets we can build sovereign model on data set and clump cluster. Further the data set gets classified into regular traffic pattern and anonymous pattern using KNN classification algorithm. Based on obtained pattern for normal and threats data sets, security devices and system will set rules and guidelines to learn by it to take needed stroke. This paper analysis the computer to learn security actions from the given data sets which already exist in the previous happens.

Arsalan, A., Rehman, R. A..  2018.  Prevention of Timing Attack in Software Defined Named Data Network with VANETs. 2018 International Conference on Frontiers of Information Technology (FIT). :247–252.

Software Defined Network (SDN) is getting popularity both from academic and industry. Lot of researches have been made to combine SDN with future Internet paradigms to manage and control networks efficiently. SDN provides better management and control in a network through decoupling of data and control plane. Named Data Networking (NDN) is a future Internet technique with aim to replace IPv4 addressing problems. In NDN, communication between different nodes done on the basis of content names rather than IP addresses. Vehicular Ad-hoc Network (VANET) is a subtype of MANET which is also considered as a hot area for future applications. Different vehicles communicate with each other to form a network known as VANET. Communication between VANET can be done in two ways (i) Vehicle to Vehicle (V2V) (ii) Vehicle to Infrastructure (V2I). Combination of SDN and NDN techniques in future Internet can solve lot of problems which were hard to answer by considering a single technique. Security in VANET is always challenging due to unstable topology of VANET. In this paper, we merge future Internet techniques and propose a new scheme to answer timing attack problem in VANETs named as Timing Attack Prevention (TAP) protocol. Proposed scheme is evaluated through simulations which shows the superiority of proposed protocol regarding detection and mitigation of attacker vehicles as compared to normal timing attack scenario in NDN based VANET.

Hmouda, E., Li, W..  2018.  Detection and Prevention of Attacks in MANETs by Improving the EAACK Protocol. SoutheastCon 2018. :1–7.

Mobile Ad Hoc Networks are dynamic in nature and have no rigid or reliable network infrastructure by their very definition. They are expected to be self-governed and have dynamic wireless links which are not entirely reliable in terms of connectivity and security. Several factors could cause their degradation, such as attacks by malicious and selfish nodes which result in data carrying packets being dropped which in turn could cause breaks in communication between nodes in the network. This paper aims to address the issue of remedy and mitigation of the damage caused by packet drops. We proposed an improvement on the EAACK protocol to reduce the network overhead packet delivery ratio by using hybrid cryptography techniques DES due to its higher efficiency in block encryption, and RSA due to its management in key cipher. Comparing to the existing approaches, our simulated results show that hybrid cryptography techniques provide higher malicious behavior detection rates, and improve the performance. This research can also lead to more future efforts in using hybrid encryption based authentication techniques for attack detection/prevention in MANETs.

2019-05-20
Sutradhar, M. R., Sultana, N., Dey, H., Arif, H..  2018.  A New Version of Kerberos Authentication Protocol Using ECC and Threshold Cryptography for Cloud Security. 2018 Joint 7th International Conference on Informatics, Electronics Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision Pattern Recognition (icIVPR). :239–244.

Dependency on cloud computing are increasing day by day due to its beneficial aspects. As day by day we are relying on cloud computing, the securities issues are coming up. There are lots of security protocols but now-a-days those protocol are not secured enough to provide a high security. One of those protocols which were once highly secured, is Kerberos authentication protocol. With the advancement of technology, Kerberos authentication protocol is no longer as secured as it was before. Many authors have thought about the improvement of Kerberos authentication protocol and consequently they have proposed different types of protocol models by using a renowned public key cryptography named RSA cryptography. Though RSA cryptography is good to some extent but this cryptography has some flaws that make this cryptography less secured as well as less efficient. In this paper, we are combining Elliptic Curve Cryptography (ECC) as well as Threshold Cryptography to create a new version of Kerberos authentication protocol. Our proposed model will provide secure transaction of data which will not only be hard to break but also increase memory efficiency, cost efficiency, and reduce the burden of computation.

Dey, H., Islam, R., Arif, H..  2019.  An Integrated Model To Make Cloud Authentication And Multi-Tenancy More Secure. 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST). :502–506.

Cloud Computing is an important term of modern technology. The usefulness of Cloud is increasing day by day and simultaneously more and more security problems are arising as well. Two of the major threats of Cloud are improper authentication and multi-tenancy. According to the specialists both pros and cons belong to multi-tenancy. There are security protocols available but it is difficult to claim these protocols are perfect and ensure complete protection. The purpose of this paper is to propose an integrated model to ensure better Cloud security for Authentication and multi-tenancy. Multi-tenancy means sharing of resources and virtualization among clients. Since multi-tenancy allows multiple users to access same resources simultaneously, there is high probability of accessing confidential data without proper privileges. Our model includes Kerberos authentication protocol to enhance authentication security. During our research on Kerberos we have found some flaws in terms of encryption method which have been mentioned in couple of IEEE conference papers. Pondering about this complication we have elected Elliptic Curve Cryptography. On the other hand, to attenuate arose risks due to multi-tenancy we are proposing a Resource Allocation Manager Unit, a Control Database and Resource Allocation Map. This part of the model will perpetuate resource allocation for the users.

Kurera, C., Navoda, D..  2018.  Node-to-Node Secure Data Transmission Protocol for Low-power IoT Devices. 2018 18th International Conference on Advances in ICT for Emerging Regions (ICTer). :1–7.

Through the internet and local networks, IoT devices exchange data. Most of the IoT devices are low-power devices, meaning that they are designed to use less electric power. To secure data transmission, it is required to encrypt the messages. Encryption and decryption of messages are computationally expensive activities, thus require considerable amount of processing and memory power which is not affordable to low-power IoT devices. Therefore, not all secure transmission protocols are low-power IoT devices friendly. This study proposes a secure data transmission protocol for low-power IoT devices. The design inherits some features in Kerberos and onetime password concepts. The protocol is designed for devices which are connected to each other, as in a fully connected network topology. The protocol uses symmetric key cryptography under the assumption of that the device specific keys are never being transmitted over the network. It resists DoS, message replay and Man-of-the-middle attacks while facilitating the key security concepts such as Authenticity, Confidentiality and Integrity. The designed protocol uses less number of encryption/decryption cycles and maintain session based strong authentication to facilitate secure data transmission among nodes.

F, A. K., Mhaibes, H. Imad.  2018.  A New Initial Authentication Scheme for Kerberos 5 Based on Biometric Data and Virtual Password. 2018 International Conference on Advanced Science and Engineering (ICOASE). :280–285.

Kerberos is a third party and widely used authentication protocol, in which it enables computers to connect securely using a single sign-on over an insecure channel. It proves the identity of clients and encrypts all the communications between them to ensure data privacy and integrity. Typically, Kerberos composes of three communication phases to establish a secure session between any two clients. The authentication is based on a password-based scheme, in which it is a secret long-term key shared between the client and the Kerberos. Therefore, Kerberos suffers from a password-guessing attack, the main drawback of Kerberos. In this paper, we overcome this limitation by modifying the first initial phase using the virtual password and biometric data. In addition, the proposed protocol provides a strong authentication scenario against multiple types of attacks.

Ma, Y., Ning, H..  2018.  The improvement of wireless LAN security authentication mechanism based on Kerberos. 2018 International Conference on Electronics Technology (ICET). :392–397.

In order to solve the problem of vulnerable password guessing attacks caused by dictionary attacks, replay attacks in the authentication process, and man-in-the-middle attacks in the existing wireless local area network in terms of security authentication, we make some improvements to the 802.1X / EAP authentication protocol based on the study of the current IEEE802.11i security protocol with high security. After introducing the idea of Kerberos protocol authentication and applying the idea in the authentication process of 802.1X / EAP, a new protocol of Kerberos extensible authentication protocol (KEAP) is proposed. Firstly, the protocol introduces an asymmetric key encryption method, uses public key encryption during data transmission, and the receiver uses the corresponding private key for decryption. With unidirectional characteristics and high security, the encryption can avoid password guessing attacks caused by dictionary attacks as much as possible. Secondly, aiming at the problem that the request message sent from the client to the authentication server is vulnerable to replay attacks, the protocol uses a combination of the message sequence number and the random number, and the message serial number is added to the request message sent from the client to the authentication server. And establish a list database for storing message serial number and random number in the authentication server. After receiving a transfer message, the serial number and the random number are extracted and compared with the values in the list database to distinguish whether it is a retransmission message. Finally, the protocol introduces a keychain mechanism and uses an irreversible Hash function to encrypt the final authentication result, thereby effectively solving the man-in-the-middle attack by the pretender. The experiment uses the OPNET 14.5 simulation platform to model the KEAP protocol and simulate simulation attacks, and compares it with the current more common EAP-TLS authentication protocol. Experimental results show that the average traffic of the KEAP protocol is at least 14.74% higher than the EAP-TLS authentication protocol, and the average bit error rate is reduced by at least 24.00%.

Prokofiev, A. O., Smirnova, Y. S., Surov, V. A..  2018.  A method to detect Internet of Things botnets. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :105–108.

The main security problems, typical for the Internet of Things (IoT), as well as the purpose of gaining unauthorized access to the IoT, are considered in this paper. Common characteristics of the most widespread botnets are provided. A method to detect compromised IoT devices included into a botnet is proposed. The method is based on a model of logistic regression. The article describes a developed model of logistic regression which allows to estimate the probability that a device initiating a connection is running a bot. A list of network protocols, used to gain unauthorized access to a device and to receive instructions from common and control (C&C) server, is provided too.

Celia, L., Cungang, Y..  2018.  (WIP) Authenticated Key Management Protocols for Internet of Things. 2018 IEEE International Congress on Internet of Things (ICIOT). :126–129.

The Internet of Things (IoT) provides transparent and seamless incorporation of heterogeneous and different end systems. It has been widely used in many applications such as smart homes. However, people may resist the IOT as long as there is no public confidence that it will not cause any serious threats to their privacy. Effective secure key management for things authentication is the prerequisite of security operations. In this paper, we present an interactive key management protocol and a non-interactive key management protocol to minimize the communication cost of the things. The security analysis show that the proposed schemes are resilient to various types of attacks.

2019-05-09
Ivanov, A. V., Sklyarov, V. A..  2018.  The Urgency of the Threats of Attacks on Interfaces and Field-Layer Protocols in Industrial Control Systems. 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). :162-165.

The paper is devoted to analysis of condition of executing devices and sensors of Industrial Control Systems information security. The work contains structures of industrial control systems divided into groups depending on system's layer. The article contains the analysis of analog interfaces work and work features of data transmission protocols in industrial control system field layer. Questions about relevance of industrial control systems information security, both from the point of view of the information security occurring incidents, and from the point of view of regulators' reaction in the form of normative legal acts, are described. During the analysis of the information security systems of industrial control systems a possibility of leakage through technical channels of information leakage at the field layer was found. Potential vectors of the attacks on devices of field layer and data transmission network of an industrial control system are outlined in the article. The relevance analysis of the threats connected with the attacks at the field layer of an industrial control system is carried out, feature of this layer and attractiveness of this kind of attacks is observed.

2019-05-01
Vagin, V. V., Butakova, N. G..  2019.  Mathematical Modeling of Group Authentication Based on Isogeny of Elliptic Curves. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1780–1785.

In this paper, we consider ways of organizing group authentication, as well as the features of constructing the isogeny of elliptic curves. The work includes the study of isogeny graphs and their application in postquantum systems. A hierarchical group authentication scheme has been developed using transformations based on the search for isogeny of elliptic curves.

Valenta, L., Sullivan, N., Sanso, A., Heninger, N..  2018.  In Search of CurveSwap: Measuring Elliptic Curve Implementations in the Wild. 2018 IEEE European Symposium on Security and Privacy (EuroS P). :384–398.

We survey elliptic curve implementations from several vantage points. We perform internet-wide scans for TLS on a large number of ports, as well as SSH and IPsec to measure elliptic curve support and implementation behaviors, and collect passive measurements of client curve support for TLS. We also perform active measurements to estimate server vulnerability to known attacks against elliptic curve implementations, including support for weak curves, invalid curve attacks, and curve twist attacks. We estimate that 1.53% of HTTPS hosts, 0.04% of SSH hosts, and 4.04% of IKEv2 hosts that support elliptic curves do not perform curve validity checks as specified in elliptic curve standards. We describe how such vulnerabilities could be used to construct an elliptic curve parameter downgrade attack called CurveSwap for TLS, and observe that there do not appear to be combinations of weak behaviors we examined enabling a feasible CurveSwap attack in the wild. We also analyze source code for elliptic curve implementations, and find that a number of libraries fail to perform point validation for JSON Web Encryption, and find a flaw in the Java and NSS multiplication algorithms.

Ren, W., Yardley, T., Nahrstedt, K..  2018.  EDMAND: Edge-Based Multi-Level Anomaly Detection for SCADA Networks. 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1-7.

Supervisory Control and Data Acquisition (SCADA) systems play a critical role in the operation of large-scale distributed industrial systems. There are many vulnerabilities in SCADA systems and inadvertent events or malicious attacks from outside as well as inside could lead to catastrophic consequences. Network-based intrusion detection is a preferred approach to provide security analysis for SCADA systems due to its less intrusive nature. Data in SCADA network traffic can be generally divided into transport, operation, and content levels. Most existing solutions only focus on monitoring and event detection of one or two levels of data, which is not enough to detect and reason about attacks in all three levels. In this paper, we develop a novel edge-based multi-level anomaly detection framework for SCADA networks named EDMAND. EDMAND monitors all three levels of network traffic data and applies appropriate anomaly detection methods based on the distinct characteristics of data. Alerts are generated, aggregated, prioritized before sent back to control centers. A prototype of the framework is built to evaluate the detection ability and time overhead of it.

Chen, D., Chen, W., Chen, J., Zheng, P., Huang, J..  2018.  Edge Detection and Image Segmentation on Encrypted Image with Homomorphic Encryption and Garbled Circuit. 2018 IEEE International Conference on Multimedia and Expo (ICME). :1-6.

Edge detection is one of the most important topics of image processing. In the scenario of cloud computing, performing edge detection may also consider privacy protection. In this paper, we propose an edge detection and image segmentation scheme on an encrypted image with Sobel edge detector. We implement Gaussian filtering and Sobel operator on the image in the encrypted domain with homomorphic property. By implementing an adaptive threshold decision algorithm in the encrypted domain, we obtain a threshold determined by the image distribution. With the technique of garbled circuit, we perform comparison in the encrypted domain and obtain the edge of the image without decrypting the image in advanced. We then propose an image segmentation scheme on the encrypted image based on the detected edges. Our experiments demonstrate the viability and effectiveness of the proposed encrypted image edge detection and segmentation.

2019-04-05
Nan, Z., Zhai, L., Zhai, L., Liu, H..  2018.  Botnet Homology Method Based on Symbolic Approximation Algorithm of Communication Characteristic Curve. 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). :1-6.
The IRC botnet is the earliest and most significant botnet group that has a significant impact. Its characteristic is to control multiple zombies hosts through the IRC protocol and constructing command control channels. Relevant research analyzes the large amount of network traffic generated by command interaction between the botnet client and the C&C server. Packet capture traffic monitoring on the network is currently a more effective detection method, but this information does not reflect the essential characteristics of the IRC botnet. The increase in the amount of erroneous judgments has often occurred. To identify whether the botnet control server is a homogenous botnet, dynamic network communication characteristic curves are extracted. For unequal time series, dynamic time warping distance clustering is used to identify the homologous botnets by category, and in order to improve detection. Speed, experiments will use SAX to reduce the dimension of the extracted curve, reducing the time cost without reducing the accuracy.