Visible to the public Biblio

Filters: Keyword is optical communication  [Clear All Filters]
2021-01-18
Yu, Z., Fang, X., Zhou, Y., Xiao, L., Zhang, L..  2020.  Chaotic Constellation Scrambling Method for Security-Enhanced CO-OFDM/OQAM Systems. 2020 12th International Conference on Communication Software and Networks (ICCSN). :192–195.
With the deep research on coherent optical OFDM offset quadrature amplitude modulation OFDM/OQAM in these years, and the communication system exposed to potential threat from various capable attackers, which prompt people lay emphasis on encryption methods for transmission. Therefore, in this paper, we systematically discuss an encryption project with the main purpose of improving security in coherent optical OFDM/OQAM (CO-OFDM/OQAM) system, and the scheme applied the chaotic constellation scrambling (CCS) which founded on chaotic cross mapping to encrypt transmitted information. Besides, we also systematically discuss the basic principle of the encryption scheme for CO-OFDM/OQAM system. According to numerous studies and analysis on experiment data with caution, such as the performance of entropy, bit error rate (BER). It's conforms that the security of CO-OFDM/OQAM system have been enhanced.
2020-08-07
Guri, Mordechai, Zadov, Boris, Bykhovsky, Dima, Elovici, Yuval.  2019.  CTRL-ALT-LED: Leaking Data from Air-Gapped Computers Via Keyboard LEDs. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:801—810.
Using the keyboard LEDs to send data optically was proposed in 2002 by Loughry and Umphress [1] (Appendix A). In this paper we extensively explore this threat in the context of a modern cyber-attack with current hardware and optical equipment. In this type of attack, an advanced persistent threat (APT) uses the keyboard LEDs (Caps-Lock, Num-Lock and Scroll-Lock) to encode information and exfiltrate data from airgapped computers optically. Notably, this exfiltration channel is not monitored by existing data leakage prevention (DLP) systems. We examine this attack and its boundaries for today's keyboards with USB controllers and sensitive optical sensors. We also introduce smartphone and smartwatch cameras as components of malicious insider and 'evil maid' attacks. We provide the necessary scientific background on optical communication and the characteristics of modern USB keyboards at the hardware and software level, and present a transmission protocol and modulation schemes. We implement the exfiltration malware, discuss its design and implementation issues, and evaluate it with different types of keyboards. We also test various receivers, including light sensors, remote cameras, 'extreme' cameras, security cameras, and smartphone cameras. Our experiment shows that data can be leaked from air-gapped computers via the keyboard LEDs at a maximum bit rate of 3000 bit/sec per LED given a light sensor as a receiver, and more than 120 bit/sec if smartphones are used. The attack doesn't require any modification of the keyboard at hardware or firmware levels.
2020-07-20
Marakis, Evangelos, van Harten, Wouter, Uppu, Ravitej, Vos, Willem L., Pinkse, Pepijn W. H..  2017.  Reproducibility of artificial multiple scattering media. 2017 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC). :1–1.
Summary form only given. Authentication of people or objects using physical keys is insecure against secret duplication. Physical unclonable functions (PUF) are special physical keys that are assumed to be unclonable due to the large number of degrees of freedom in their manufacturing [1]. Opaque scattering media, such as white paint and teeth, comprise of millions of nanoparticles in a random arrangement. Under coherent light illumination, the multiple scattering from these nanoparticles gives rise to a complex interference resulting in a speckle pattern. The speckle pattern is seemingly random but highly sensitive to the exact position and size of the nanoparticles in the given piece of opaque scattering medium [2], thereby realizing an ideal optical PUF. These optical PUFs enabled applications such as quantum-secure authentication (QSA) and communication [3, 4].
2019-01-21
Memedi, A., Sommer, C., Dressler, F..  2018.  On the need for coordinated access control for vehicular visible light communication. 2018 14th Annual Conference on Wireless On-demand Network Systems and Services (WONS). :121–124.
We argue on the need for a dedicated medium access control (MAC) for Vehicular VLC (V-VLC). The huge unlicensed spectrum that can support high throughput applications and the intrinsic security due to the LOS requirement make visible light a viable candidate for use in vehicular communications. In some first research work, the directionality of V-VLC has been considered and an initial conclusion was that the small collision domain leads to negligible interference and, thus, dedicated mechanisms for medium access are unnecessary. However, in a more realistic simulation setup using the Luxembourg mobility model, we are able to show that, in certain geographical areas, the number of transmitters seen at a single receiver can easily grow up to 30. Considering packet transmissions, the interference-induced packet loss can be substantial, reaching up to 13 % during rush hours. We thus make the case that this packet loss should be mitigated with a dedicated MAC for coordinated access control in V-VLC.
Wang, J., Lin, S., Liu, C., Wang, J., Zhu, B., Jiang, Y..  2018.  Secrecy Capacity of Indoor Visible Light Communication Channels. 2018 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
In the indoor scenario, visible light communications (VLC) is regarded as one of the most promising candidates for future wireless communications. Recently, the physical layer security for indoor VLC has drawn considerable attention. In this paper, the secrecy capacity of indoor VLC is analyzed. Initially, an VLC system with a transmitter, a legitimate receiver, and an eavesdropper is established. In the system, the nonnegativity, the peak optical intensity constraint and the dimmable average optical intensity constraint are considered. Based on the principle of information theory, the closed-form expressions of the upper and the lower bounds on the secrecy capacity are derived, respectively. Numerical results show that the upper and the lower bounds on secrecy capacity are very tight, which verify the accuracy of the derived closed-form expressions.
Lian, J., Wang, X., Noshad, M., Brandt-Pearce, M..  2018.  Optical Wireless Interception Vulnerability Analysis of Visible Light Communication System. 2018 IEEE International Conference on Communications (ICC). :1–6.
Visible light communication is a solution for high-security wireless data transmission. In this paper, we first analyze the potential vulnerability of the system from eavesdropping outside the room. By setting up a signal to noise ratio threshold, we define a vulnerable area outside of the room through a window. We compute the receiver aperture needed to capture the signal and what portion of the space is most vulnerable to eavesdropping. Based on the analysis, we propose a solution to improve the security by optimizing the modulation efficiency of each LED in the indoor lamp. The simulation results show that the proposed solution can improve the security considerably while maintaining the indoor communication performance.
Schrenk, B., Pacher, C..  2018.  1 Gb/s All-LED Visible Light Communication System. 2018 Optical Fiber Communications Conference and Exposition (OFC). :1–3.
We evaluate the use of LEDs intended for illumination as low-cost filtered optical detectors. An optical wireless system that is exclusively based on commercial off-the-shelf 5-mm R/G/B LEDs is experimentally demonstrated for Gb/s close-proximity transmission.
2017-12-27
Aromataris, G., Annovazzi-Lodi, V..  2016.  Two- and three-laser chaos communications. 18th Italian National Conference on Photonic Technologies (Fotonica 2016). :1–4.

After a brief introduction on optical chaotic cryptography, we compare the standard short cavity, close-loop, two-laser and three-laser schemes for secure transmission, showing that both are suitable for secure data exchange, the three-laser scheme offering a slightly better level of privacy, due to its symmetrical topology.

2017-12-04
Thayananthan, V., Abdulkader, O., Jambi, K., Bamahdi, A. M..  2017.  Analysis of Cybersecurity Based on Li-Fi in Green Data Storage Environments. 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud). :327–332.

Industrial networking has many issues based on the type of industries, data storage, data centers, and cloud computing, etc. Green data storage improves the scientific, commercial and industrial profile of the networking. Future industries are looking for cybersecurity solution with the low-cost resources in which the energy serving is the main problem in the industrial networking. To improve these problems, green data storage will be the priority because data centers and cloud computing deals with the data storage. In this analysis, we have decided to use solar energy source and different light rays as methodologies include a prism and the Li-Fi techniques. In this approach, light rays sent through the prism which allows us to transmit the data with different frequencies. This approach provides green energy and maximum protection within the data center. As a result, we have illustrated that cloud services within the green data center in industrial networking will achieve better protection with the low-cost energy through this analysis. Finally, we have to conclude that Li-Fi enhances the use of green energy and protection which are advantages to current and future industrial networking.

2015-05-06
Xiang Zhou.  2014.  Efficient Clock and Carrier Recovery Algorithms for Single-Carrier Coherent Optical Systems: A systematic review on challenges and recent progress. Signal Processing Magazine, IEEE. 31:35-45.

This article presents a systematic review on the challenges and recent progress of timing and carrier synchronization techniques for high-speed optical transmission systems using single-carrier-based coherent optical modulation formats.