Visible to the public Biblio

Filters: Keyword is wearable computers  [Clear All Filters]
2021-07-08
Abdo, Mahmoud A., Abdel-Hamid, Ayman A., Elzouka, Hesham A..  2020.  A Cloud-based Mobile Healthcare Monitoring Framework with Location Privacy Preservation. 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT). :1—8.
Nowadays, ubiquitous healthcare monitoring applications are becoming a necessity. In a pervasive smart healthcare system, the user's location information is always transmitted periodically to healthcare providers to increase the quality of the service provided to the user. However, revealing the user's location will affect the user's privacy. This paper presents a novel cloud-based secure location privacy-preserving mobile healthcare framework with decision-making capabilities. A user's vital signs are sensed possibly through a wearable healthcare device and transmitted to a cloud server for securely storing user's data, processing, and decision making. The proposed framework integrates a number of features such as machine learning (ML) for classifying a user's health state, and crowdsensing for collecting information about a person's privacy preferences for possible locations and applying such information to a user who did not set his privacy preferences. In addition to location privacy preservation methods (LPPM) such as obfuscation, perturbation and encryption to protect the location of the user and provide a secure monitoring framework. The proposed framework detects clear emergency cases and quickly decides about sending a help message to a healthcare provider before sending data to the cloud server. To validate the efficiency of the proposed framework, a prototype is developed and tested. The obtained results from the proposed prototype prove its feasibility and utility. Compared to the state of art, the proposed framework offers an adaptive context-based decision for location sharing privacy and controlling the trade-off between location privacy and service utility.
2021-07-07
Hussain, Rashid.  2020.  Peripheral View of IoT based Miniature Devices Security Paradigm. 2020 Global Conference on Wireless and Optical Technologies (GCWOT). :1–7.
Tunnel approach to the security and privacy aspects of communication networks has been an issue since the inception of networking technologies. Neither the technology nor the regulatory and legal frame works proactively play a significant role towards addressing the ever escalating security challenges. As we have move to ubiquitous computing paradigm where information secrecy and privacy is coupled with new challenges of human to machine and machine to machine interfaces, a transformational model for security should be visited. This research is attempted to highlight the peripheral view of IoT based miniature device security paradigm with focus on standardization, regulations, user adaptation, software and applications, low computing resources and power consumption, human to machine interface and privacy.
2021-05-20
Mehndiratta, Nishtha.  2020.  A Yoking-Proof and PUF-based Mutual Authentication Scheme for Cloud-aided Wearable Devices. 2020 IEEE International Conference for Innovation in Technology (INOCON). :1—4.

In today's world privacy is paramount in everyone's life. Alongside the growth of IoT (Internet of things), wearable devices are becoming widely popular for real-time user monitoring and wise service support. However, in contrast with the traditional short-range communications, these resource-scanty devices face various vulnerabilities and security threats during the course of interactions. Hence, designing a security solution for these devices while dealing with the limited communication and computation capabilities is a challenging task. In this work, PUF (Physical Unclonable Function) and lightweight cryptographic parameters are used together for performing two-way authentication between wearable devices and smartphone, while the simultaneous verification is performed by providing yoking-proofs to the Cloud Server. At the end, it is shown that the proposed scheme satisfies many security aspects and is flexible as well as lightweight.

Narwal, Bhawna, Ojha, Arushi, Goel, Nimisha, Dhawan, Sudipti.  2020.  A Yoking-Proof Based Remote Authentication Scheme for Cloud-Aided Wearable Devices (YPACW). 2020 IEEE International Conference for Innovation in Technology (INOCON). :1—5.

The developments made in IoT applications have made wearable devices a popular choice for collecting user data to monitor this information and provide intelligent service support. Since wearable devices are continuously collecting and transporting a user's sensitive data over the network, there exist increased security challenges. Moreover, wearable devices lack the computation capabilities in comparison to traditional short-range communication devices. In this paper, authors propounded a Yoking Proof based remote Authentication scheme for Cloud-aided Wearable devices (YPACW) which takes PUF and cryptographic functions and joins them to achieve mutual authentication between the wearable devices and smartphone via a cloud server, by performing the simultaneous verification of these devices, using the established yoking-proofs. Relative to Liu et al.'s scheme, YPACW provides better results with the reduction of communication and processing cost significantly.

Sunehra, Dhiraj, Sreshta, V. Sai, Shashank, V., Kumar Goud, B. Uday.  2020.  Raspberry Pi Based Smart Wearable Device for Women Safety using GPS and GSM Technology. 2020 IEEE International Conference for Innovation in Technology (INOCON). :1—5.
Security has become a major concern for women, children and even elders in every walk of their life. Women are getting assaulted and molested, children are getting kidnapped, elder citizens are also facing many problems like robbery, etc. In this paper, a smart security solution called smart wearable device system is implemented using the Raspberry Pi3 for enhancing the safety and security of women/children. It works as an alert as well as a security system. It provides a buzzer alert alert to the people who are nearby to the user (wearing the smart device). The system uses Global Positioning System (GPS) to locate the user, sends the location of the user through SMS to the emergency contact and police using the Global System for Mobile Communications (GSM) / General Radio Packet Service (GPRS) technology. The device also captures the image of the assault and surroundings of the user or victim using USB Web Camera interfaced to the device and sends it as an E-mail alert to the emergency contact soon after the user presses the panic button present on Smart wearable device system.
2021-03-09
Toutara, F., Spathoulas, G..  2020.  A distributed biometric authentication scheme based on blockchain. 2020 IEEE International Conference on Blockchain (Blockchain). :470–475.

Biometric authentication is the preferred authentication scheme in modern computing systems. While it offers enhanced usability, it also requires cautious handling of sensitive users' biometric templates. In this paper, a distributed scheme that eliminates the requirement for a central node that holds users' biometric templates is presented. This is replaced by an Ethereum/IPFS combination to which the templates of the users are stored in a homomorphically encrypted form. The scheme enables the biometric authentication of the users by any third party service, while the actual biometric templates of the user never leave his device in non encrypted form. Secure authentication of users in enabled, while sensitive biometric data are not exposed to anyone. Experiments show that the scheme can be applied as an authentication mechanism with minimal time overhead.

2020-09-28
Dong, Guishan, Chen, Yuxiang, Fan, Jia, Liu, Dijun, Hao, Yao, Wang, Zhen.  2018.  A Privacy-User-Friendly Scheme for Wearable Smart Sensing Devices Based on Blockchain. 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :481–486.
Wearable smart sensing devices presently become more and more popular in people's daily life, which also brings serious problems related to personal data privacy. In order to provide users better experiences, wearable smart sensing devices are collecting users' personal data all the time and uploading the data to service provider to get computing services, which objectively let service provider master each user's condition and cause a lot of problems such as spam, harassing call, etc. This paper designs a blockchain based scheme to solve such problems by cutting off the association between user identifier and its sensing data from perspective of shielding service providers and adversaries. Firstly, privacy requirements and situations in smart sensing area are reviewed. Then, three key technologies are introduced in the scheme including its theories, purposes and usage. Next, the designed protocol is shown and analyzed in detail. Finally, security analysis and engineering feasibility of the scheme are given. This scheme will give user better experience from privacy protection perspective in smart sensing area.
2020-07-20
Shi, Yang, Wang, Xiaoping, Fan, Hongfei.  2017.  Light-weight white-box encryption scheme with random padding for wearable consumer electronic devices. IEEE Transactions on Consumer Electronics. 63:44–52.
Wearable devices can be potentially captured or accessed in an unauthorized manner because of their physical nature. In such cases, they are in white-box attack contexts, where the adversary may have total visibility on the implementation of the built-in cryptosystem, with full control over its execution platform. Dealing with white-box attacks on wearable devices is undoubtedly a challenge. To serve as a countermeasure against threats in such contexts, we propose a lightweight encryption scheme to protect the confidentiality of data against white-box attacks. We constructed the scheme's encryption and decryption algorithms on a substitution-permutation network that consisted of random secret components. Moreover, the encryption algorithm uses random padding that does not need to be correctly decrypted as part of the input. This feature enables non-bijective linear transformations to be used in each encryption round to achieve strong security. The required storage for static data is relatively small and the algorithms perform well on various devices, which indicates that the proposed scheme satisfies the requirements of wearable computing in terms of limited memory and low computational power.
2020-02-17
Shang, Jiacheng, Wu, Jie.  2019.  A Usable Authentication System Using Wrist-Worn Photoplethysmography Sensors on Smartwatches. 2019 IEEE Conference on Communications and Network Security (CNS). :1–9.
Smartwatches are expected to become the world's best-selling electronic product after smartphones. Various smart-watches have been released to the private consumer market, but the data on smartwatches is not well protected. In this paper, we show for the first time that photoplethysmography (PPG)signals influenced by hand gestures can be used to authenticate users on smartwatches. The insight is that muscle and tendon movements caused by hand gestures compress the arterial geometry with different degrees, which has a significant impact on the blood flow. Based on this insight, novel approaches are proposed to detect the starting point and ending point of the hand gesture from raw PPG signals and determine if these PPG signals are from a normal user or an attacker. Different from existing solutions, our approach leverages the PPG sensors that are available on most smartwatches and does not need to collect training data from attackers. Also, our system can be used in more general scenarios wherever users can perform hand gestures and is robust against shoulder surfing attacks. We conduct various experiments to evaluate the performance of our system and show that our system achieves an average authentication accuracy of 96.31 % and an average true rejection rate of at least 91.64% against two types of attacks.
Wang, Chen, Liu, Jian, Guo, Xiaonan, Wang, Yan, Chen, Yingying.  2019.  WristSpy: Snooping Passcodes in Mobile Payment Using Wrist-worn Wearables. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :2071–2079.
Mobile payment has drawn considerable attention due to its convenience of paying via personal mobile devices at anytime and anywhere, and passcodes (i.e., PINs or patterns) are the first choice of most consumers to authorize the payment. This paper demonstrates a serious security breach and aims to raise the awareness of the public that the passcodes for authorizing transactions in mobile payments can be leaked by exploiting the embedded sensors in wearable devices (e.g., smartwatches). We present a passcode inference system, WristSpy, which examines to what extent the user's PIN/pattern during the mobile payment could be revealed from a single wrist-worn wearable device under different passcode input scenarios involving either two hands or a single hand. In particular, WristSpy has the capability to accurately reconstruct fine-grained hand movement trajectories and infer PINs/patterns when mobile and wearable devices are on two hands through building a Euclidean distance-based model and developing a training-free parallel PIN/pattern inference algorithm. When both devices are on the same single hand, a highly challenging case, WristSpy extracts multi-dimensional features by capturing the dynamics of minute hand vibrations and performs machine-learning based classification to identify PIN entries. Extensive experiments with 15 volunteers and 1600 passcode inputs demonstrate that an adversary is able to recover a user's PIN/pattern with up to 92% success rate within 5 tries under various input scenarios.
MacDermott, Áine, Lea, Stephen, Iqbal, Farkhund, Idowu, Ibrahim, Shah, Babar.  2019.  Forensic Analysis of Wearable Devices: Fitbit, Garmin and HETP Watches. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–6.
Wearable technology has been on an exponential rise and shows no signs of slowing down. One category of wearable technology is Fitness bands, which have the potential to show a user's activity levels and location data. Such information stored in fitness bands is just the beginning of a long trail of evidence fitness bands can store, which represents a huge opportunity to digital forensic practitioners. On the surface of recent work and research in this area, there does not appear to be any similar work that has already taken place on fitness bands and particularly, the devices in this study, a Garmin Forerunner 110, a Fitbit Charge HR and a Generic low-cost HETP fitness tracker. In this paper, we present our analysis of these devices for any possible digital evidence in a forensically sound manner, identifying files of interest and location data on the device. Data accuracy and validity of the evidence is shown, as a test run scenario wearing all of the devices allowed for data comparison analysis.
Pandelea, Alexandru-Ionut, Chiroiu, Mihai-Daniel.  2019.  Password Guessing Using Machine Learning on Wearables. 2019 22nd International Conference on Control Systems and Computer Science (CSCS). :304–311.
Wearables are now ubiquitous items equipped with a multitude of sensors such as GPS, accelerometer, or Bluetooth. The raw data from this sensors are typically used in a health context. However, we can also use it for security purposes. In this paper, we present a solution that aims at using data from the sensors of a wearable device to identify the password a user is typing on a keyboard by using machine learning algorithms. Hence, the purpose is to determine whether a malicious third party application could extract sensitive data through the raw data that it has access to.
Zhang, Lili, Han, Dianqi, Li, Ang, Li, Tao, Zhang, Yan, Zhang, Yanchao.  2019.  WristUnlock: Secure and Usable Smartphone Unlocking with Wrist Wearables. 2019 IEEE Conference on Communications and Network Security (CNS). :28–36.
We propose WristUnlock, a novel technique that uses a wrist wearable to unlock a smartphone in a secure and usable fashion. WristUnlock explores both the physical proximity and secure Bluetooth connection between the smartphone and wrist wearable. There are two modes in WristUnlock with different security and usability features. In the WristRaise mode, the user raises his smartphone in his natural way with the same arm carrying the wrist wearable; the smartphone gets unlocked if the acceleration data on the smartphone and wrist wearable satisfy an anticipated relationship specific to the user himself. In the WristTouch mode, the wrist wearable sends a random number to the smartphone through both the Bluetooth channel and a touch-based physical channel; the smartphone gets unlocked if the numbers received from both channels are equal. We thoroughly analyze the security of WristUnlock and confirm its high efficacy through detailed experiments.
Hassan, Mehmood, Mansoor, Khwaja, Tahir, Shahzaib, Iqbal, Waseem.  2019.  Enhanced Lightweight Cloud-assisted Mutual Authentication Scheme for Wearable Devices. 2019 International Conference on Applied and Engineering Mathematics (ICAEM). :62–67.
With the emergence of IoT, wearable devices are drawing attention and becoming part of our daily life. These wearable devices collect private information about their wearers. Mostly, a secure authentication process is used to verify a legitimate user that relies on the mobile terminal. Similarly, remote cloud services are used for verification and authentication of both wearable devices and wearers. Security is necessary to preserve the privacy of users. Some traditional authentication protocols are proposed which have vulnerabilities and are prone to different attacks like forgery, de-synchronization, and un-traceability issues. To address these vulnerabilities, recently, Wu et al. (2017) proposed a cloud-assisted authentication scheme which is costly in terms of computations required. Therefore this paper proposed an improved, lightweight and computationally efficient authentication scheme for wearable devices. The proposed scheme provides similar level of security as compared to Wu's (2017) scheme but requires 41.2% lesser computations.
2019-01-16
Shrestha, P., Shrestha, B., Saxena, N..  2018.  Home Alone: The Insider Threat of Unattended Wearables and A Defense using Audio Proximity. 2018 IEEE Conference on Communications and Network Security (CNS). :1–9.

In this paper, we highlight and study the threat arising from the unattended wearable devices pre-paired with a smartphone over a wireless communication medium. Most users may not lock their wearables due to their small form factor, and may strip themselves off of these devices often, leaving or forgetting them unattended while away from homes (or shared office spaces). An “insider” attacker (potentially a disgruntled friend, roommate, colleague, or even a spouse) can therefore get hold of the wearable, take it near the user's phone (i.e., within radio communication range) at another location (e.g., user's office), and surreptitiously use it across physical barriers for various nefarious purposes, including pulling and learning sensitive information from the phone (such as messages, photos or emails), and pushing sensitive commands to the phone (such as making phone calls, sending text messages and taking pictures). The attacker can then safely restore the wearable, wait for it to be left unattended again and may repeat the process for maximum impact, while the victim remains completely oblivious to the ongoing attack activity. This malicious behavior is in sharp contrast to the threat of stolen wearables where the victim would unpair the wearable as soon as the theft is detected. Considering the severity of this threat, we also respond by building a defense based on audio proximity, which limits the wearable to interface with the phone only when it can pick up on an active audio challenge produced by the phone.

2018-04-02
Doolan, S., Hoseiny, N., Hosein, N., Bhagwandin, D..  2017.  Constant Time, Fixed Memory, Zero False Negative Error Logging for Low Power Wearable Devices. 2017 IEEE Conference on Wireless Sensors (ICWiSe). :1–5.

Wireless wearable embedded devices dominate the Internet of Things (IoT) due to their ability to provide useful information about the body and its local environment. The constrained resources of low power processors, however, pose a significant challenge to run-time error logging and hence, product reliability. Error logs classify error type and often system state following the occurrence of an error. Traditional error logging algorithms attempt to balance storage and accuracy by selectively overwriting past log entries. Since a specific combination of firmware faults may result in system instability, preserving all error occurrences becomes increasingly beneficial as IOT systems become more complex. In this paper, a novel hash-based error logging algorithm is presented which has both constant insertion time and constant memory while also exhibiting no false negatives and an acceptable false positive error rate. Both theoretical analysis and simulations are used to compare the performance of the hash-based and traditional approaches.

Kolamunna, H., Chauhan, J., Hu, Y., Thilakarathna, K., Perino, D., Makaroff, D., Seneviratne, A..  2017.  Are Wearables Ready for HTTPS? On the Potential of Direct Secure Communication on Wearables 2017 IEEE 42nd Conference on Local Computer Networks (LCN). :321–329.

The majority of available wearable computing devices require communication with Internet servers for data analysis and storage, and rely on a paired smartphone to enable secure communication. However, many wearables are equipped with WiFi network interfaces, enabling direct communication with the Internet. Secure communication protocols could then run on these wearables themselves, yet it is not clear if they can be efficiently supported.,,,,In this paper, we show that wearables are ready for direct and secure Internet communication by means of experiments with both controlled local web servers and Internet servers. We observe that the overall energy consumption and communication delay can be reduced with direct Internet connection via WiFi from wearables compared to using smartphones as relays via Bluetooth. We also show that the additional HTTPS cost caused by TLS handshake and encryption is closely related to the number of parallel connections, and has the same relative impact on wearables and smartphones.

Vhaduri, S., Poellabauer, C..  2017.  Wearable Device User Authentication Using Physiological and Behavioral Metrics. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). :1–6.

Wearables, such as Fitbit, Apple Watch, and Microsoft Band, with their rich collection of sensors, facilitate the tracking of healthcare- and wellness-related metrics. However, the assessment of the physiological metrics collected by these devices could also be useful in identifying the user of the wearable, e.g., to detect unauthorized use or to correctly associate the data to a user if wearables are shared among multiple users. Further, researchers and healthcare providers often rely on these smart wearables to monitor research subjects and patients in their natural environments over extended periods of time. Here, it is important to associate the sensed data with the corresponding user and to detect if a device is being used by an unauthorized individual, to ensure study compliance. Existing one-time authentication approaches using credentials (e.g., passwords, certificates) or trait-based biometrics (e.g., face, fingerprints, iris, voice) might fail, since such credentials can easily be shared among users. In this paper, we present a continuous and reliable wearable-user authentication mechanism using coarse-grain minute-level physical activity (step counts) and physiological data (heart rate, calorie burn, and metabolic equivalent of task). From our analysis of 421 Fitbit users from a two-year long health study, we are able to statistically distinguish nearly 100% of the subject-pairs and to identify subjects with an average accuracy of 92.97%.

Yadav, S., Howells, G..  2017.  Analysis of ICMetrics Features/Technology for Wearable Devices IOT Sensors. 2017 Seventh International Conference on Emerging Security Technologies (EST). :175–178.

This paper investigates the suitability of employing various measurable features derived from multiple wearable devices (Apple Watch), for the generation of unique authentication and encryption keys related to the user. This technique is termed as ICMetrics. The ICMetrics technology requires identifying the suitable features in an environment for key generation most useful for online services. This paper presents an evaluation of the feasibility of identifying a unique user based on desirable feature set and activity data collected over short and long term and explores how the number of samples being factored into the ICMetrics system affects uniqueness of the key.

Fereidooni, H., Frassetto, T., Miettinen, M., Sadeghi, A. R., Conti, M..  2017.  Fitness Trackers: Fit for Health but Unfit for Security and Privacy. 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE). :19–24.

Wearable devices for fitness tracking and health monitoring have gained considerable popularity and become one of the fastest growing smart devices market. More and more companies are offering integrated health and activity monitoring solutions for fitness trackers. Recently insurances are offering their customers better conditions for health and condition monitoring. However, the extensive sensitive information collected by tracking products and accessibility by third party service providers poses vital security and privacy challenges on the employed solutions. In this paper, we present our security analysis of a representative sample of current fitness tracking products on the market. In particular, we focus on malicious user setting that aims at injecting false data into the cloud-based services leading to erroneous data analytics. We show that none of these products can provide data integrity, authenticity and confidentiality.

Zhang, Q., Liang, Z..  2017.  Security Analysis of Bluetooth Low Energy Based Smart Wristbands. 2017 2nd International Conference on Frontiers of Sensors Technologies (ICFST). :421–425.

Wearable devices are being more popular in our daily life. Especially, smart wristbands are booming in the market recently, which can be used to monitor health status, track fitness data, or even do medical tests, etc. For this reason, smart wristbands can obtain a lot of personal data. Hence, users and manufacturers should pay more attention to the security aspects of smart wristbands. However, we have found that some Bluetooth Low Energy based smart wristbands have very weak or even no security protection mechanism, therefore, they are vulnerable to replay attacks, man-in-the-middle attacks, brute-force attacks, Denial of Service (DoS) attacks, etc. We have investigated four different popular smart wristbands and a smart watch. Among them, only the smart watch is protected by some security mechanisms while the other four smart wristbands are not protected. In our experiments, we have also figured out all the message formats of the controlling commands of these smart wristbands and developed an Android software application as a testing tool. Powered by the resolved command formats, this tool can directly control these wristbands, and any other wristbands of these four models, without using the official supporting applications.

2018-01-10
Hu, P., Pathak, P. H., Shen, Y., Jin, H., Mohapatra, P..  2017.  PCASA: Proximity Based Continuous and Secure Authentication of Personal Devices. 2017 14th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–9.
User's personal portable devices such as smartphone, tablet and laptop require continuous authentication of the user to prevent against illegitimate access to the device and personal data. Current authentication techniques require users to enter password or scan fingerprint, making frequent access to the devices inconvenient. In this work, we propose to exploit user's on-body wearable devices to detect their proximity from her portable devices, and use the proximity for continuous authentication of the portable devices. We present PCASA which utilizes acoustic communication for secure proximity estimation with sub-meter level accuracy. PCASA uses Differential Pulse Position Modulation scheme that modulates data through varying the silence period between acoustic pulses to ensure energy efficiency even when authentication operation is being performed once every second. It yields an secure and accurate distance estimation even when user is mobile by utilizing Doppler effect for mobility speed estimation. We evaluate PCASA using smartphone and smartwatches, and show that it supports up to 34 hours of continuous authentication with a fully charged battery.
2017-03-08
Sarkisyan, A., Debbiny, R., Nahapetian, A..  2015.  WristSnoop: Smartphone PINs prediction using smartwatch motion sensors. 2015 IEEE International Workshop on Information Forensics and Security (WIFS). :1–6.

Smartwatches, with motion sensors, are becoming a common utility for users. With the increasing popularity of practical wearable computers, and in particular smartwatches, the security risks linked with sensors on board these devices have yet to be fully explored. Recent research literature has demonstrated the capability of using a smartphone's own accelerometer and gyroscope to infer tap locations; this paper expands on this work to demonstrate a method for inferring smartphone PINs through the analysis of smartwatch motion sensors. This study determines the feasibility and accuracy of inferring user keystrokes on a smartphone through a smartwatch worn by the user. Specifically, we show that with malware accessing only the smartwatch's motion sensors, it is possible to recognize user activity and specific numeric keypad entries. In a controlled scenario, we achieve results no less than 41% and up to 92% accurate for PIN prediction within 5 guesses.

Tsao, Chia-Chin, Chen, Yan-Ying, Hou, Yu-Lin, Hsu, Winston H..  2015.  Identify Visual Human Signature in community via wearable camera. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2229–2233.

With the increasing popularity of wearable devices, information becomes much easily available. However, personal information sharing still poses great challenges because of privacy issues. We propose an idea of Visual Human Signature (VHS) which can represent each person uniquely even captured in different views/poses by wearable cameras. We evaluate the performance of multiple effective modalities for recognizing an identity, including facial appearance, visual patches, facial attributes and clothing attributes. We propose to emphasize significant dimensions and do weighted voting fusion for incorporating the modalities to improve the VHS recognition. By jointly considering multiple modalities, the VHS recognition rate can reach by 51% in frontal images and 48% in the more challenging environment and our approach can surpass the baseline with average fusion by 25% and 16%. We also introduce Multiview Celebrity Identity Dataset (MCID), a new dataset containing hundreds of identities with different view and clothing for comprehensive evaluation.

2015-05-06
Malik, O.A., Arosha Senanayake, S.M.N., Zaheer, D..  2015.  An Intelligent Recovery Progress Evaluation System for ACL Reconstructed Subjects Using Integrated 3-D Kinematics and EMG Features. Biomedical and Health Informatics, IEEE Journal of. 19:453-463.

An intelligent recovery evaluation system is presented for objective assessment and performance monitoring of anterior cruciate ligament reconstructed (ACL-R) subjects. The system acquires 3-D kinematics of tibiofemoral joint and electromyography (EMG) data from surrounding muscles during various ambulatory and balance testing activities through wireless body-mounted inertial and EMG sensors, respectively. An integrated feature set is generated based on different features extracted from data collected for each activity. The fuzzy clustering and adaptive neuro-fuzzy inference techniques are applied to these integrated feature sets in order to provide different recovery progress assessment indicators (e.g., current stage of recovery, percentage of recovery progress as compared to healthy group, etc.) for ACL-R subjects. The system was trained and tested on data collected from a group of healthy and ACL-R subjects. For recovery stage identification, the average testing accuracy of the system was found above 95% (95-99%) for ambulatory activities and above 80% (80-84%) for balance testing activities. The overall recovery evaluation performed by the proposed system was found consistent with the assessment made by the physiotherapists using standard subjective/objective scores. The validated system can potentially be used as a decision supporting tool by physiatrists, physiotherapists, and clinicians for quantitative rehabilitation analysis of ACL-R subjects in conjunction with the existing recovery monitoring systems.