Visible to the public Biblio

Found 119 results

Filters: Keyword is integrated circuits  [Clear All Filters]
2021-10-04
Karfa, Chandan, Chouksey, Ramanuj, Pilato, Christian, Garg, Siddharth, Karri, Ramesh.  2020.  Is Register Transfer Level Locking Secure? 2020 Design, Automation Test in Europe Conference Exhibition (DATE). :550–555.
Register Transfer Level (RTL) locking seeks to prevent intellectual property (IP) theft of a design by locking the RTL description that functions correctly on the application of a key. This paper evaluates the security of a state-of-the-art RTL locking scheme using a satisfiability modulo theories (SMT) based algorithm to retrieve the secret key. The attack first obtains the high-level behavior of the locked RTL, and then use an SMT based formulation to find so-called distinguishing input patterns (DIP)1 The attack methodology has two main advantages over the gate-level attacks. First, since the attack handles the design at the RTL, the method scales to large designs. Second, the attack does not apply separate unlocking strategies for the combinational and sequential parts of a design; it handles both styles via a unifying abstraction. We demonstrate the attack on locked RTL generated by TAO [1], a state-of-the-art RTL locking solution. Empirical results show that we can partially or completely break designs locked by TAO.
2021-09-16
Ambareen, Javeria, M, Prabhakar, Ara, Tabassum.  2020.  Edge Data Security for RFID-Based Devices. 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE). :272–277.
Radio-frequency identification (RFID) has become a preferred technology for monitoring in industrial internet of things (IIoT) applications like supply chain, medical industry, vehicle tracking and warehouse monitoring where information is required continually. Typical security threats seen in these applications are denial of service (DOS) attack, transmission attack etc. We propose a novel edge data security schema based on spike modulation along with backscatter communication technique to modulate both sensor and identification (ID) information. It is observed that this data encoding schema works well even in a multi-tag single-reader environment. Further, it uses lower power and offers a low-cost solution for Industrial IoT applications.
2021-09-07
Zhang, Yaofang, Wang, Bailing, Wu, Chenrui, Wei, Xiaojie, Wang, Zibo, Yin, Guohua.  2020.  Attack Graph-Based Quantitative Assessment for Industrial Control System Security. 2020 Chinese Automation Congress (CAC). :1748–1753.
Industrial control systems (ICSs) are facing serious security challenges due to their inherent flaws, and emergence of vulnerabilities from the integration with commercial components and networks. To that end, assessing the security plays a vital role for current industrial enterprises which are responsible for critical infrastructure. This paper accomplishes a complex task of quantitative assessment based on attack graphs in order to look forward critical paths. For the purpose of application to a large-scale heterogeneous ICSs, we propose a flexible attack graph generation algorithm is proposed with the help of the graph data model. Hereafter, our quantitative assessment takes a consideration of graph indicators on specific nodes and edges to get the security metrics. In order to improve results of obtaining the critical attack path, we introduced a formulating selection rule, considering the asset value of industrial control devices. The experimental results show validation and verification of the proposed method.
2021-09-01
Barinov, Andrey, Beschastnov, Semen, Boger, Alexander, Kolpakov, Alexey, Ufimtcev, Maxim.  2020.  Virtual Environment for Researching Information Security of a Distributed ICS. 2020 Global Smart Industry Conference (GloSIC). :348—353.
Nowadays, industrial control systems are increasingly subject to cyber-attacks. In this regard, the relevance of ICS modeling for security research and for teaching employees the basics of information security is increasing. Most of the existing testbeds for research on information security of industrial control systems are software and hardware solutions that contain elements of industrial equipment. However, when implementing distance-learning programs, it is not possible to fully use such testbeds. This paper describes the approach of complete virtualization of technological processes in ICS based on the open source programmable logic controller OpenPLC. This enables a complete information security training from any device with Internet access. A unique feature of this stand is also the support of several PLCs and a lower-level subsystem implemented by a distributed I/O system. The study describes the implementation scheme of the stand, and several case of reproduction of attacks. Scaling approaches for this solution are also considered.
2021-08-17
Tychalas, Dimitrios, Maniatakos, Michail.  2020.  IFFSET: In-Field Fuzzing of Industrial Control Systems using System Emulation. 2020 Design, Automation Test in Europe Conference Exhibition (DATE). :662—665.
Industrial Control Systems (ICS) have evolved in the last decade, shifting from proprietary software/hardware to contemporary embedded architectures paired with open-source operating systems. In contrast to the IT world, where continuous updates and patches are expected, decommissioning always-on ICS for security assessment can incur prohibitive costs to their owner. Thus, a solution for routinely assessing the cybersecurity posture of diverse ICS without affecting their operation is essential. Therefore, in this paper we introduce IFFSET, a platform that leverages full system emulation of Linux-based ICS firmware and utilizes fuzzing for security evaluation. Our platform extracts the file system and kernel information from a live ICS device, building an image which is emulated on a desktop system through QEMU. We employ fuzzing as a security assessment tool to analyze ICS specific libraries and find potential security threatening conditions. We test our platform with commercial PLCs, showcasing potential threats with no interruption to the control process.
2021-08-11
Chen, Siyuan, Jung, Jinwook, Song, Peilin, Chakrabarty, Krishnendu, Nam, Gi-Joon.  2020.  BISTLock: Efficient IP Piracy Protection using BIST. 2020 IEEE International Test Conference (ITC). :1—5.
The globalization of IC manufacturing has increased the likelihood for IP providers to suffer financial and reputational loss from IP piracy. Logic locking prevents IP piracy by corrupting the functionality of an IP unless a correct secret key is inserted. However, existing logic-locking techniques can impose significant area overhead and performance impact (delay and power) on designs. In this work, we propose BISTLock, a logic-locking technique that utilizes built-in self-test (BIST) to isolate functional inputs when the circuit is locked. We also propose a set of security metrics and use the proposed metrics to quantify BISTLock's security strength for an open-source AES core. Our experimental results demonstrate that BISTLock is easy to implement and introduces an average of 0.74% area and no power or delay overhead across the set of benchmarks used for evaluation.
2021-08-03
Kuai, Jun, He, Jiaji, Ma, Haocheng, Zhao, Yiqiang, Hou, Yumin, Jin, Yier.  2020.  WaLo: Security Primitive Generator for RT-Level Logic Locking and Watermarking. 2020 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :01—06.
Various hardware security solutions have been developed recently to help counter hardware level attacks such as hardware Trojan, integrated circuit (IC) counterfeiting and intellectual property (IP) clone/piracy. However, existing solutions often provide specific types of protections. While these solutions achieve great success in preventing even advanced hardware attacks, the compatibility of among these hardware security methods are rarely discussed. The inconsistency hampers with the development of a comprehensive solution for hardware IC and IP from various attacks. In this paper, we develop a security primitive generator to help solve the compatibility issue among different protection techniques. Specifically, we focus on two modern IC/IP protection methods, logic locking and watermarking. A combined locking and watermarking technique is developed based on enhanced finite state machines (FSMs). The security primitive generator will take user-specified constraints and automatically generate an FSM module to perform both logic locking and watermarking. The generated FSM can be integrated into any designs for protection. Our experimental results show that the generator can facilitate circuit protection and provide the flexibility for users to achieve a better tradeoff between security levels and design overheads.
2021-07-28
Wang, Wenhui, Chen, Liandong, Han, Longxi, Zhou, Zhihong, Xia, Zhengmin, Chen, Xiuzhen.  2020.  Vulnerability Assessment for ICS system Based on Zero-day Attack Graph. 2020 International Conference on Intelligent Computing, Automation and Systems (ICICAS). :1—5.
The numerous attacks on ICS systems have made severe threats to critical infrastructure. Extensive studies have focussed on the risk assessment of discovering vulnerabilities. However, to identify Zero-day vulnerabilities is challenging because they are unknown to defenders. Here we sought to measure ICS system zero-day risk by building an enhanced attack graph for expected attack path exploiting zero-day vulnerability. In this study, we define the security metrics of Zero-day vulnerability for an ICS. Then we created a Zero-day attack graph to guide how to harden the system by measuring attack paths that exploiting zero-day vulnerabilities. Our studies identify the vulnerability assessment method on ICS systems considering Zero-day Vulnerability by zero-day attack graph. Together, our work is essential to ICS systems security. By assessing unknown vulnerability risk to close the imbalance between attackers and defenders.
2021-07-27
Su, K.-M., Liu, I.-H., Li, J.-S..  2020.  The Risk of Industrial Control System Programmable Logic Controller Default Configurations. 2020 International Computer Symposium (ICS). :443—447.
In recent years, many devices in industrial control systems (ICS) equip Ethernet modules for more efficient communication and more fiexible deployment. Many communication protocols of those devices are based on internet protocol, which brings the above benefits but also makes it easier to access by anyone including attackers. In the case of using the factory default configurations, we wiiˆ demonstrate how to easily modify the programmable logic controllers (PLCs) program through the Integrated Development Environment provided by the manufacturer under the security protection of PLC not set properly and discuss the severity of it.
2021-06-28
Mouris, Dimitris, Georgios Tsoutsos, Nektarios.  2020.  Pythia: Intellectual Property Verification in Zero-Knowledge. 2020 57th ACM/IEEE Design Automation Conference (DAC). :1–6.
The contemporary IC supply chain depends heavily on third-party intellectual property (3PIP) that is integrated to in-house designs. As the correctness of such 3PIPs should be verified before integration, one important challenge for 3PIP vendors is proving the functionality of their designs while protecting the privacy of circuit implementations. In this work, we present Pythia that employs zero-knowledge proofs to enable vendors convince integrators about the functionality of a circuit without disclosing its netlist. Pythia automatically encodes netlists into zero knowledge-friendly format, evaluates them on different inputs, and proves correctness of outputs. We evaluate Pythia using the ISCAS'85 benchmark suite.
2021-05-25
Hopkins, Stephen, Kalaimannan, Ezhil, John, Caroline Sangeetha.  2020.  Cyber Resilience using State Estimation Updates Based on Cyber Attack Matrix Classification. 2020 IEEE Kansas Power and Energy Conference (KPEC). :1—6.
Cyber-physical systems (CPS) maintain operation, reliability, and safety performance using state estimation and control methods. Internet connectivity and Internet of Things (IoT) devices are integrated with CPS, such as in smart grids. This integration of Operational Technology (OT) and Information Technology (IT) brings with it challenges for state estimation and exposure to cyber-threats. This research establishes a state estimation baseline, details the integration of IT, evaluates the vulnerabilities, and develops an approach for detecting and responding to cyber-attack data injections. Where other approaches focus on integration of IT cyber-controls, this research focuses on development of classification tools using data currently available in state estimation methods to quantitatively determine the presence of cyber-attack data. The tools may increase computational requirements but provide methods which can be integrated with existing state estimation methods and provide for future research in state estimation based cyber-attack incident response. A robust cyber-resilient CPS includes the ability to detect and classify a cyber-attack, determine the true system state, and respond to the cyber-attack. The purpose of this paper is to establish a means for a cyber aware state estimator given the existence of sub-erroneous outlier detection, cyber-attack data weighting, cyber-attack data classification, and state estimation cyber detection.
Dodson, Michael, Beresford, Alastair R., Richardson, Alexander, Clarke, Jessica, Watson, Robert N. M..  2020.  CHERI Macaroons: Efficient, host-based access control for cyber-physical systems. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :688–693.
Cyber-Physical Systems (CPS) often rely on network boundary defence as a primary means of access control; therefore, the compromise of one device threatens the security of all devices within the boundary. Resource and real-time constraints, tight hardware/software coupling, and decades-long service lifetimes complicate efforts for more robust, host-based access control mechanisms. Distributed capability systems provide opportunities for restoring access control to resource-owning devices; however, such a protection model requires a capability-based architecture for CPS devices as well as task compartmentalisation to be effective.This paper demonstrates hardware enforcement of network bearer tokens using an efficient translation between CHERI (Capability Hardware Enhanced RISC Instructions) architectural capabilities and Macaroon network tokens. While this method appears to generalise to any network-based access control problem, we specifically consider CPS, as our method is well-suited for controlling resources in the physical domain. We demonstrate the method in a distributed robotics application and in a hierarchical industrial control application, and discuss our plans to evaluate and extend the method.
Alnsour, Rawan, Hamdan, Basil.  2020.  Incorporating SCADA Cybersecurity in Undergraduate Engineering Technology Information Technology Education. 2020 Intermountain Engineering, Technology and Computing (IETC). :1—4.

The purpose of this paper is threefold. First, it makes the case for incorporating cybersecurity principles into undergraduate Engineering Technology Education and for incorporating Industrial Control Systems (ICS) principles into undergraduate Information Technology (IT)/Cybersecurity Education. Specifically, the paper highlights the knowledge/skill gap between engineers and IT/Cybersecurity professionals with respect to the cybersecurity of the ICS. Secondly, it identifies several areas where traditional IT systems and ICS intercept. This interception not only implies that ICS are susceptible to the same cyber threats as traditional IT/IS but also to threats that are unique to ICS. Subsequently, the paper identifies several areas where cybersecurity principles can be applied to ICS. By incorporating cybersecurity principles into Engineering Technology Education, the paper hopes to provide IT/Cybersecurity and Engineering Students with (a) the theoretical knowledge of the cybersecurity issues associated with administering and operating ICS and (b) the applied technical skills necessary to manage and mitigate the cyber risks against these systems. Overall, the paper holds the promise of contributing to the ongoing effort aimed at bridging the knowledge/skill gap with respect to securing ICS against cyber threats and attacks.

2021-05-05
Chi, Po-Wen, Wang, Ming-Hung, Zheng, Yu.  2020.  SandboxNet: An Online Malicious SDN Application Detection Framework for SDN Networking. 2020 International Computer Symposium (ICS). :397—402.

Software Defined Networking (SDN) is a concept that decouples the control plane and the user plane. So the network administrator can easily control the network behavior through its own programs. However, the administrator may unconsciously apply some malicious programs on SDN controllers so that the whole network may be under the attacker’s control. In this paper, we discuss the malicious software issue on SDN networks. We use the idea of sandbox to propose a sandbox network called SanboxNet. We emulate a virtual isolated network environment to verify the SDN application functions. With continuous monitoring, we can locate the suspicious SDN applications. We also consider the sandbox-evading issue in our framework. The emulated networks and the real world networks will be indistinguishable to the SDN controller.

2021-04-09
Lin, T., Shi, Y., Shu, N., Cheng, D., Hong, X., Song, J., Gwee, B. H..  2020.  Deep Learning-Based Image Analysis Framework for Hardware Assurance of Digital Integrated Circuits. 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). :1—6.
We propose an Artificial Intelligence (AI)/Deep Learning (DL)-based image analysis framework for hardware assurance of digital integrated circuits (ICs). Our aim is to examine and verify various hardware information from analyzing the Scanning Electron Microscope (SEM) images of an IC. In our proposed framework, we apply DL-based methods at all essential steps of the analysis. To the best of our knowledge, this is the first such framework that makes heavy use of DL-based methods at all essential analysis steps. Further, to reduce time and effort required in model re-training, we propose and demonstrate various automated or semi-automated training data preparation methods and demonstrate the effectiveness of using synthetic data to train a model. By applying our proposed framework to analyzing a set of SEM images of a large digital IC, we prove its efficacy. Our DL-based methods are fast, accurate, robust against noise, and can automate tasks that were previously performed mainly manually. Overall, we show that DL-based methods can largely increase the level of automation in hardware assurance of digital ICs and improve its accuracy.
2021-03-30
Pyatnisky, I. A., Sokolov, A. N..  2020.  Assessment of the Applicability of Autoencoders in the Problem of Detecting Anomalies in the Work of Industrial Control Systems.. 2020 Global Smart Industry Conference (GloSIC). :234—239.

Deep learning methods are increasingly becoming solutions to complex problems, including the search for anomalies. While fully-connected and convolutional neural networks have already found their application in classification problems, their applicability to the problem of detecting anomalies is limited. In this regard, it is proposed to use autoencoders, previously used only in problems of reducing the dimension and removing noise, as a method for detecting anomalies in the industrial control system. A new method based on autoencoders is proposed for detecting anomalies in the operation of industrial control systems (ICS). Several neural networks based on auto-encoders with different architectures were trained, and the effectiveness of each of them in the problem of detecting anomalies in the work of process control systems was evaluated. Auto-encoders can detect the most complex and non-linear dependencies in the data, and as a result, can show the best quality for detecting anomalies. In some cases, auto-encoders require fewer machine resources.

Li, Y., Ji, X., Li, C., Xu, X., Yan, W., Yan, X., Chen, Y., Xu, W..  2020.  Cross-domain Anomaly Detection for Power Industrial Control System. 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC). :383—386.

In recent years, artificial intelligence has been widely used in the field of network security, which has significantly improved the effect of network security analysis and detection. However, because the power industrial control system is faced with the problem of shortage of attack data, the direct deployment of the network intrusion detection system based on artificial intelligence is faced with the problems of lack of data, low precision, and high false alarm rate. To solve this problem, we propose an anomaly traffic detection method based on cross-domain knowledge transferring. By using the TrAdaBoost algorithm, we achieve a lower error rate than using LSTM alone.

Gillen, R. E., Carter, J. M., Craig, C., Johnson, J. A., Scott, S. L..  2020.  Assessing Anomaly-Based Intrusion Detection Configurations for Industrial Control Systems. 2020 IEEE 21st International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). :360—366.

To reduce cost and ease maintenance, industrial control systems (ICS) have adopted Ethernetbased interconnections that integrate operational technology (OT) systems with information technology (IT) networks. This integration has made these critical systems vulnerable to attack. Security solutions tailored to ICS environments are an active area of research. Anomalybased network intrusion detection systems are well-suited for these environments. Often these systems must be optimized for their specific environment. In prior work, we introduced a method for assessing the impact of various anomaly-based network IDS settings on security. This paper reviews the experimental outcomes when we applied our method to a full-scale ICS test bed using actual attacks. Our method provides new and valuable data to operators enabling more informed decisions about IDS configurations.

2021-03-29
Das, T., Eldosouky, A. R., Sengupta, S..  2020.  Think Smart, Play Dumb: Analyzing Deception in Hardware Trojan Detection Using Game Theory. 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–8.
In recent years, integrated circuits (ICs) have become significant for various industries and their security has been given greater priority, specifically in the supply chain. Budgetary constraints have compelled IC designers to offshore manufacturing to third-party companies. When the designer gets the manufactured ICs back, it is imperative to test for potential threats like hardware trojans (HT). In this paper, a novel multi-level game-theoretic framework is introduced to analyze the interactions between a malicious IC manufacturer and the tester. In particular, the game is formulated as a non-cooperative, zero-sum, repeated game using prospect theory (PT) that captures different players' rationalities under uncertainty. The repeated game is separated into a learning stage, in which the defender learns about the attacker's tendencies, and an actual game stage, where this learning is used. Experiments show great incentive for the attacker to deceive the defender about their actual rationality by "playing dumb" in the learning stage (deception). This scenario is captured using hypergame theory to model the attacker's view of the game. The optimal deception rationality of the attacker is analytically derived to maximize utility gain. For the defender, a first-step deception mitigation process is proposed to thwart the effects of deception. Simulation results show that the attacker can profit from the deception as it can successfully insert HTs in the manufactured ICs without being detected.
2021-03-16
Fiebig, T..  2020.  How to stop crashing more than twice: A Clean-Slate Governance Approach to IT Security. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :67—74.

"Moving fast, and breaking things", instead of "being safe and secure", is the credo of the IT industry. However, if we look at the wide societal impact of IT security incidents in the past years, it seems like it is no longer sustainable. Just like in the case of Equifax, people simply forget updates, just like in the case of Maersk, companies do not use sufficient network segmentation. Security certification does not seem to help with this issue. After all, Equifax was IS027001 compliant.In this paper, we take a look at how we handle and (do not) learn from security incidents in IT security. We do this by comparing IT security incidents to early and later aviation safety. We find interesting parallels to early aviation safety, and outline the governance levers that could make the world of IT more secure, which were already successful in making flying the most secure way of transportation.

2021-03-15
Chang, H.-C., Lin, C.-Y., Liao, D.-J., Koo, T.-M..  2020.  The Modbus Protocol Vulnerability Test in Industrial Control Systems. 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :375—378.

Industrial Control Systems (ICSs) are widely used in critical infrastructure around the world to provide services that sustain peoples' livelihoods and economic operations. However, compared with the critical infrastructure, the security of the ICS itself is still insufficient, and there will be a degree of damage, if it is attacked or invaded. In the past, an ICS was designed to operate in a traditional closed network, so the industrial equipment and transmission protocol lacked security verification. In addition, an ICS has high availability requirements, so that its equipment is rarely replaced and upgraded. Although many scholars have proposed the defense mechanism that is applicable to ICS in the past, there is still a lack of tested means to verify these defense technologies. The purpose of this study is to analyze the security of a system using the Modbus transmission protocol in an ICS, to establish a modular security test system based on four types of attacks that have been identified in the past literature, namely, a detection attack, a command injection attack, a response injection attack and a denial of service, to implement the attack results and to display the process in the virtual environment of Conpot and Rapid SCADA, and finally, to adopt the ICS security standards mentioned by previous scholars, namely, confidentiality, integrity and availability, as the performance evaluation criteria of this study.

2021-03-09
Ho, W.-G., Ng, C.-S., Kyaw, N. A., Lwin, N. Kyaw Zwa, Chong, K.-S., Gwee, B.-H..  2020.  High Efficiency Early-Complete Brute Force Elimination Method for Security Analysis of Camouflage IC. 2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). :161—164.

We propose a high efficiency Early-Complete Brute Force Elimination method that speeds up the analysis flow of the Camouflage Integrated Circuit (IC). The proposed method is targeted for security qualification of the Camouflaged IC netlists in Intellectual Property (IP) protection. There are two main features in the proposed method. First, the proposed method features immediate elimination of the incorrect Camouflage gates combination for the rest of computation, concentrating the resources into other potential correct Camouflage gates combination. Second, the proposed method features early complete, i.e. revealing the correct Camouflage gates once all incorrect gates combination are eliminated, increasing the computation speed for the overall security analysis. Based on the Python programming platform, we implement the algorithm of the proposed method and test it for three circuits including ISCAS’89 benchmarks. From the simulation results, our proposed method, on average, features 71% lesser number of trials and 79% shorter run time as compared to the conventional method in revealing the correct Camouflage gates from the Camouflaged IC netlist.

2021-03-04
Riya, S. S., Lalu, V..  2020.  Stable cryptographic key generation using SRAM based Physical Unclonable Function. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :653—657.
Physical unclonable functions(PUFs) are widely used as hardware root-of-trust to secure IoT devices, data and services. A PUF exploits inherent randomness introduced during manufacturing to give a unique digital fingerprint. Static Random-Access Memory (SRAM) based PUFs can be used as a mature technology for authentication. An SRAM with a number of SRAM cells gives an unrepeatable and random pattern of 0's and 1's during power on. As it is a unique pattern, it can be called as SRAM fingerprint and can be used as a PUF. The chance of producing more number of same values (either zero or one) is higher during power on. If a particular value present at almost all the cell during power on, it will lead to the dominance of either zero or one in the cryptographic key sequence. As the cryptographic key is generated by randomly taking address location of SRAM cells, (the subset of power on values of all the SRAM cells)the probability of occurring the same sequence most of the time is higher. In order to avoid that situation, SRAM should have to produce an equal number of zeros and ones during power on. SRAM PUF is implemented in Cadence Virtuoso tool. To generate equal zeros and ones during power on, variations can be done in the physical dimensions and to increase the stability body biasing can be effectively done.
2021-02-03
Liu, H., Zhou, Z., Zhang, M..  2020.  Application of Optimized Bidirectional Generative Adversarial Network in ICS Intrusion Detection. 2020 Chinese Control And Decision Conference (CCDC). :3009—3014.

Aiming at the problem that the traditional intrusion detection method can not effectively deal with the massive and high-dimensional network traffic data of industrial control system (ICS), an ICS intrusion detection strategy based on bidirectional generative adversarial network (BiGAN) is proposed in this paper. In order to improve the applicability of BiGAN model in ICS intrusion detection, the optimal model was obtained through the single variable principle and cross-validation. On this basis, the supervised control and data acquisition (SCADA) standard data set is used for comparative experiments to verify the performance of the optimized model on ICS intrusion detection. The results show that the ICS intrusion detection method based on optimized BiGAN has higher accuracy and shorter detection time than other methods.

Rehan, S., Singh, R..  2020.  Industrial and Home Automation, Control, Safety and Security System using Bolt IoT Platform. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :787—793.
This paper describes a system that comprises of control, safety and security subsystem for industries and homes. The entire system is based on the Bolt IoT platform. Using this system, the user can control the devices such as LEDs, speed of the fan or DC motor, monitor the temperature of the premises with an alert sub-system for critical temperatures through SMS and call, monitor the presence of anyone inside the premises with an alert sub-system about any intrusion through SMS and call. If the system is used specifically in any industry then instead of monitoring the temperature any other physical quantity, which is critical for that industry, can be monitored using suitable sensors. In addition, the cloud connectivity is provided to the system using the Bolt IoT module and temperature data is sent to the cloud where using machine-learning algorithm the future temperature is predicted to avoid any accidents in the future.