Visible to the public Biblio

Found 173 results

Filters: Keyword is integrated circuits  [Clear All Filters]
Chen, Qingqing, Zhou, Mi, Cai, Ziwen, Su, Sheng.  2022.  Compliance Checking Based Detection of Insider Threat in Industrial Control System of Power Utilities. 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). :1142—1147.
Compare to outside threats, insider threats that originate within targeted systems are more destructive and invisible. More importantly, it is more difficult to detect and mitigate these insider threats, which poses significant cyber security challenges to an industry control system (ICS) tightly coupled with today’s information technology infrastructure. Currently, power utilities rely mainly on the authentication mechanism to prevent insider threats. If an internal intruder breaks the protection barrier, it is hard to identify and intervene in time to prevent harmful damage. Based on the existing in-depth security defense system, this paper proposes an insider threat protection scheme for ICSs of power utilities. This protection scheme can conduct compliance check by taking advantage of the characteristics of its business process compliance and the nesting of upstream and downstream business processes. Taking the Advanced Metering Infrastructures (AMIs) in power utilities as an example, the potential insider threats of violation and misoperation under the current management mechanism are identified after the analysis of remote charge control operation. According to the business process, a scheme of compliance check for remote charge control command is presented. Finally, the analysis results of a specific example demonstrate that the proposed scheme can effectively prevent the consumers’ power outage due to insider threats.
Zhang, Yuqiang, Hao, Zhiqiang, Hu, Ning, Luo, Jiawei, Wang, Chonghua.  2022.  A virtualization-based security architecture for industrial control systems. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :94–101.
The Industrial Internet expands the attack surface of industrial control systems(ICS), bringing cybersecurity threats to industrial controllers located in operation technology(OT) networks. Honeypot technology is an important means to detect network attacks. However, the existing honeypot system cannot simulate business logic and is difficult to resist highly concealed APT attacks. This paper proposes a high-simulation ICS security defense framework based on virtualization technology. The framework utilizes virtualization technology to build twins for protected control systems. The architecture can infer the execution results of control instructions in advance based on actual production data, so as to discover hidden attack behaviors in time. This paper designs and implements a prototype system and demonstrates the effectiveness and potential of this architecture for ICS security.
Chirupphapa, Pawissakan, Hossain, Md Delwar, Esaki, Hiroshi, Ochiai, Hideya.  2022.  Unsupervised Anomaly Detection in RS-485 Traffic using Autoencoders with Unobtrusive Measurement. 2022 IEEE International Performance, Computing, and Communications Conference (IPCCC). :17—23.
Remotely connected devices have been adopted in several industrial control systems (ICS) recently due to the advancement in the Industrial Internet of Things (IIoT). This led to new security vulnerabilities because of the expansion of the attack surface. Moreover, cybersecurity incidents in critical infrastructures are increasing. In the ICS, RS-485 cables are widely used in its network for serial communication between each component. However, almost 30 years ago, most of the industrial network protocols implemented over RS-485 such as Modbus were designed without security features. Therefore, anomaly detection is required in industrial control networks to secure communication in the systems. The goal of this paper is to study unsupervised anomaly detection in RS-485 traffic using autoencoders. Five threat scenarios in the physical layer of the industrial control network are proposed. The novelty of our method is that RS-485 traffic is collected indirectly by an analog-to-digital converter. In the experiments, multilayer perceptron (MLP), 1D convolutional, Long Short-Term Memory (LSTM) autoencoders are trained to detect anomalies. The results show that three autoencoders effectively detect anomalous traffic with F1-scores of 0.963, 0.949, and 0.928 respectively. Due to the indirect traffic collection, our method can be practically applied in the industrial control network.
Doraswamy, B., Krishna, K. Lokesh.  2022.  A Deep Learning Approach for Anomaly Detection in Industrial Control Systems. 2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS). :442—448.
An Industrial Control System (ICS) is essential in monitoring and controlling critical infrastructures such as safety and security. Internet of Things (IoT) in ICSs allows cyber-criminals to utilize systems' vulnerabilities towards deploying cyber-attacks. To distinguish risks and keep an eye on malicious activity in networking systems, An Intrusion Detection System (IDS) is essential. IDS shall be used by system admins to identify unwanted accesses by attackers in various industries. It is now a necessary component of each organization's security governance. The main objective of this intended work is to establish a deep learning-depended intrusion detection system that can quickly identify intrusions and other unwanted behaviors that have the potential to interfere with networking systems. The work in this paper uses One Hot encoder for preprocessing and the Auto encoder for feature extraction. On KDD99 CUP, a data - set for network intruding, we categorize the normal and abnormal data applying a Deep Convolutional Neural Network (DCNN), a deep learning-based methodology. The experimental findings demonstrate that, in comparison with SVM linear Kernel model, SVM RBF Kernel model, the suggested deep learning model operates better.
Bukharev, Dmitriy A., Ragozin, Andrey N., Sokolov, Alexander N..  2022.  Method for Determining the Optimal Number of Clusters for ICS Information Processes Analysis During Cyberattacks Based on Hierarchical Clustering. 2022 Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :309—312.
The development of industrial automation tools and the integration of industrial and corporate networks in order to improve the quality of production management have led to an increase in the risks of successful cyberattacks and, as a result, to the necessity to solve the problems of practical information security of industrial control systems (ICS). Detection of cyberattacks of both known and unknown types is could be implemented as anomaly detection in dynamic information processes recorded during the operation of ICS. Anomaly detection methods do not require preliminary analysis and labeling of the training sample. In the context of detecting attacks on ICS, cluster analysis is used as one of the methods that implement anomaly detection. The application of hierarchical cluster analysis for clustering data of ICS information processes exposed to various cyberattacks is studied, the problem of choosing the level of the cluster hierarchy corresponding to the minimum set of clusters aggregating separately normal and abnormal data is solved. It is shown that the Ward method of hierarchical cluster division produces the best division into clusters. The next stage of the study involves solving the problem of classifying the formed minimum set of clusters, that is, determining which cluster is normal and which cluster is abnormal.
KK, Sabari, Shrivastava, Saurabh, V, Sangeetha..  2022.  Anomaly-based Intrusion Detection using GAN for Industrial Control Systems. 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1—6.
In recent years, cyber-attacks on modern industrial control systems (ICS) have become more common and it acts as a victim to various kind of attackers. The percentage of attacked ICS computers in the world in 2021 is 39.6%. To identify the anomaly in a large database system is a challenging task. Deep-learning model provides better solutions for handling the huge dataset with good accuracy. On the other hand, real time datasets are highly imbalanced with their sample proportions. In this research, GAN based model, a supervised learning method which generates new fake samples that is similar to real samples has been proposed. GAN based adversarial training would address the class imbalance problem in real time datasets. Adversarial samples are combined with legitimate samples and shuffled via proper proportion and given as input to the classifiers. The generated data samples along with the original ones are classified using various machine learning classifiers and their performances have been evaluated. Gradient boosting was found to classify with 98% accuracy when compared to other
Varkey, Mariam, John, Jacob, S., Umadevi K..  2022.  Automated Anomaly Detection Tool for Industrial Control System. 2022 IEEE Conference on Dependable and Secure Computing (DSC). :1—6.
Industrial Control Systems (ICS) are not secure by design–with recent developments requiring them to connect to the Internet, they tend to be highly vulnerable. Additionally, attacks on critical infrastructures such as power grids and nuclear plants can cause significant damage and loss of lives. Since such attacks tend to generate anomalies in the systems, an efficient way of attack detection is to monitor the systems and identify anomalies in real-time. An automated anomaly detection tool is introduced in this paper. Additionally, the functioning of the systems is viewed as Finite State Automata. Specific sensor measurements are used to determine permissible transitions, and statistical measures such as the Interquartile Range are used to determine acceptable boundaries for the remaining sensor measurements provided by the system. Deviations from the boundaries or permissible transitions are considered as anomalies. An additional feature is the provision of a finite state automata diagram that provides the operational constraints of a system, given a set of regulated input. This tool showed a high anomaly detection rate when tested with three types of ICS. The concepts are also benchmarked against a state-of-the-art anomaly detection algorithm called Isolation Forest, and the results are provided.
Lo, Pei-Yu, Chen, Chi-Wei, Hsu, Wei-Ting, Chen, Chih-Wei, Tien, Chin-Wei, Kuo, Sy-Yen.  2022.  Semi-supervised Trojan Nets Classification Using Anomaly Detection Based on SCOAP Features. 2022 IEEE International Symposium on Circuits and Systems (ISCAS). :2423—2427.
Recently, hardware Trojan has become a serious security concern in the integrated circuit (IC) industry. Due to the globalization of semiconductor design and fabrication processes, ICs are highly vulnerable to hardware Trojan insertion by malicious third-party vendors. Therefore, the development of effective hardware Trojan detection techniques is necessary. Testability measures have been proven to be efficient features for Trojan nets classification. However, most of the existing machine-learning-based techniques use supervised learning methods, which involve time-consuming training processes, need to deal with the class imbalance problem, and are not pragmatic in real-world situations. Furthermore, no works have explored the use of anomaly detection for hardware Trojan detection tasks. This paper proposes a semi-supervised hardware Trojan detection method at the gate level using anomaly detection. We ameliorate the existing computation of the Sandia Controllability/Observability Analysis Program (SCOAP) values by considering all types of D flip-flops and adopt semi-supervised anomaly detection techniques to detect Trojan nets. Finally, a novel topology-based location analysis is utilized to improve the detection performance. Testing on 17 Trust-Hub Trojan benchmarks, the proposed method achieves an overall 99.47% true positive rate (TPR), 99.99% true negative rate (TNR), and 99.99% accuracy.
Shen, Wendi, Yang, Genke.  2022.  An error neighborhood-based detection mechanism to improve the performance of anomaly detection in industrial control systems. 2022 International Conference on Mechanical, Automation and Electrical Engineering (CMAEE). :25—29.
Anomaly detection for devices (e.g, sensors and actuators) plays a crucial role in Industrial Control Systems (ICS) for security protection. The typical framework of deep learning-based anomaly detection includes a model to predict or reconstruct the state of devices and a detection mechanism to determine anomalies. The majority of anomaly detection methods use a fixed threshold detection mechanism to detect anomalous points. However, the anomalies caused by cyberattacks in ICSs are usually continuous anomaly segments. In this paper, we propose a novel detection mechanism to detect continuous anomaly segments. Its core idea is to determine the start and end times of anomalies based on the continuity characteristics of anomalies and the dynamics of error. We conducted experiments on the two real-world datasets for performance evaluation using five baselines. The F1 score increased by 3.8% on average in the SWAT dataset and increased by 15.6% in the WADI dataset. The results show a significant improvement in the performance of baselines using an error neighborhood-based continuity detection mechanism in a real-time manner.
Lu, Jie, Ding, Yong, Li, Zhenyu, Wang, Chunhui.  2022.  A timestamp-based covert data transmission method in Industrial Control System. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :526—532.
Covert channels are data transmission methods that bypass the detection of security mechanisms and pose a serious threat to critical infrastructure. Meanwhile, it is also an effective way to ensure the secure transmission of private data. Therefore, research on covert channels helps us to quickly detect attacks and protect the security of data transmission. This paper proposes covert channels based on the timestamp of the Internet Control Message Protocol echo reply packet in the Linux system. By considering the concealment, we improve our proposed covert channels, ensuring that changing trends in the timestamp of modified consecutive packets are consistent with consecutive regular packets. Besides, we design an Iptables rule based on the current system time to analyze the performance of the proposed covert channels. Finally, it is shown through experiments that the channels complete the private data transmission in the industrial control network. Furthermore, the results demonstrate that the improved covert channels offer better performance in concealment, time cost, and the firewall test.
Kumar, Gaurav, Riaz, Anjum, Prasad, Yamuna, Ahlawat, Satyadev.  2022.  On Attacking IJTAG Architecture based on Locking SIB with Security LFSR. 2022 IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS). :1–6.
In recent decennium, hardware security has gained a lot of attention due to different types of attacks being launched, such as IP theft, reverse engineering, counterfeiting, etc. The critical testing infrastructure incorporated into ICs is very popular among attackers to mount side-channel attacks. The IEEE standard 1687 (IJTAG) is one such testing infrastructure that is the focus of attackers these days. To secure access to the IJTAG network, various techniques based on Locking SIB (LSIB) have been proposed. One such very effective technique makes use of Security Linear Feedback Shift Register (SLFSR) along with LSIB. The SLFSR obfuscates the scan chain information from the attacker and hence makes the brute-force attack against LSIB ineffective.In this work, it is shown that the SLFSR based Locking SIB is vulnerable to side-channel attacks. A power analysis attack along with known-plaintext attack is used to determine the IJTAG network structure. First, the known-plaintext attack is used to retrieve the SLFSR design information. This information is further used along with power analysis attack to determine the exact length of the scan chain which in turn breaks the whole security scheme. Further, a countermeasure is proposed to prevent the aforementioned hybrid attack.
ISSN: 1942-9401
Podeti, Raveendra, Sreeharirao, Patri, Pullakandam, Muralidhar.  2022.  The chaotic-based challenge feed mechanism for Arbiter Physical Unclonable Functions (APUFs) with enhanced reliability in IoT security. 2022 IEEE International Symposium on Smart Electronic Systems (iSES). :118–123.
Physical Unclonable Functions (PUFs) are the secured hardware primitives to authenticate Integrated Circuits (ICs) from various unauthorized attacks. The secured key generation mechanism through PUFs is based on random Process Variations (PVs) inherited by the CMOS transistors. In this paper, we proposed a chaotic-based challenge generation mechanism to feed the arbiter PUFs. The chaotic property is introduced to increase the non-linearity in the arbitration mechanism thereby the uncertainty of the keys is attained. The chaotic sequences are easy to generate, difficult to intercept, and have the additional advantage of being in a large number Challenge-Response Pair (CRP) generation. The proposed design has a significant advantage in key generation with improved uniqueness and diffuseness of 47.33%, and 50.02% respectively. Moreover, the enhancement in the reliability of 96.14% and 95.13% range from −40C to 125C with 10% fluctuations in supply voltage states that it has prominent security assistance to the Internet of Things (IoT) enabled devices against malicious attacks.
Hroub, Ayman, Elrabaa, Muhammad E. S..  2022.  SecSoC: A Secure System on Chip Architecture for IoT Devices. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :41—44.
IoT technology is finding new applications every day and everywhere in our daily lives. With that, come new use cases with new challenges in terms of device and data security. One of such challenges arises from the fact that many IoT devices/nodes are no longer being deployed on owners' premises, but rather on public or private property other than the owner's. With potential physical access to the IoT node, adversaries can launch many attacks that circumvent conventional protection methods. In this paper, we propose Secure SoC (SecSoC), a secure system-on-chip architecture that mitigates such attacks. This include logical memory dump attacks, bus snooping attacks, and compromised operating systems. SecSoC relies on two main mechanisms, (1) providing security extensions to the compute engine that runs the user application without changing its instruction set, (2) adding a security management unit (SMU) that provide HW security primitives for encryption, hashing, random number generators, and secrets store (keys, certificates, etc.). SecSoC ensures that no secret or sensitive data can leave the SoC IC in plaintext. SecSoC is being implemented in Bluespec System V erilog. The experimental results will reveal the area, power, and cycle time overhead of these security extensions. Overall performance (total execution time) will also be evaluated using IoT benchmarks.
Hutto, Kevin, Grijalva, Santiago, Mooney, Vincent.  2022.  Hardware-Based Randomized Encoding for Sensor Authentication in Power Grid SCADA Systems. 2022 IEEE Texas Power and Energy Conference (TPEC). :1–6.
Supervisory Control and Data Acquisition (SCADA) systems are utilized extensively in critical power grid infrastructures. Modern SCADA systems have been proven to be susceptible to cyber-security attacks and require improved security primitives in order to prevent unwanted influence from an adversarial party. One section of weakness in the SCADA system is the integrity of field level sensors providing essential data for control decisions at a master station. In this paper we propose a lightweight hardware scheme providing inferred authentication for SCADA sensors by combining an analog to digital converter and a permutation generator as a single integrated circuit. Through this method we encode critical sensor data at the time of sensing, so that unencoded data is never stored in memory, increasing the difficulty of software attacks. We show through experimentation how our design stops both software and hardware false data injection attacks occurring at the field level of SCADA systems.
Kaura, Cheerag, Sindhwani, Nidhi, Chaudhary, Alka.  2022.  Analysing the Impact of Cyber-Threat to ICS and SCADA Systems. 2022 International Mobile and Embedded Technology Conference (MECON). :466–470.
The aim of this paper is to examine noteworthy cyberattacks that have taken place against ICS and SCADA systems and to analyse them. This paper also proposes a new classification scheme based on the severity of the attack. Since the information revolution, computers and associated technologies have impacted almost all aspects of daily life, and this is especially true of the industrial sector where one of the leading trends is that of automation. This widespread proliferation of computers and computer networks has also made it easier for malicious actors to gain access to these systems and networks and carry out harmful activities.
Urooj, Beenish, Ullah, Ubaid, Shah, Munam Ali, Sikandar, Hira Shahzadi, Stanikzai, Abdul Qarib.  2022.  Risk Assessment of SCADA Cyber Attack Methods: A Technical Review on Securing Automated Real-time SCADA Systems. 2022 27th International Conference on Automation and Computing (ICAC). :1–6.
The world’s most important industrial economy is particularly vulnerable to both external and internal threats, such as the one uncovered in Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems (ICS). Upon those systems, the success criteria for security are quite dynamic. Security flaws in these automated SCADA systems have already been discovered by infiltrating the entire network in addition to reducing production line hazards. The objective of our review article is to show various potential future research voids that recent studies have, as well as how many methods are available to concentrate on specific aspects of risk assessment of manufactured systems. The state-of-the-art methods in cyber security risk assessment of SCADA systems are reviewed and compared in this research. Multiple contemporary risk assessment approaches developed for or deployed in the settings of a SCADA system are considered and examined in detail. We outline the approaches’ main points before analyzing them in terms of risk assessment, conventional analytical procedures, and research challenges. The paper also examines possible risk regions or locations where breaches in such automated SCADA systems can emerge, as well as solutions as to how to safeguard and eliminate the hazards when they arise during production manufacturing.
Saha, Akashdeep, Chatterjee, Urbi, Mukhopadhyay, Debdeep, Chakraborty, Rajat Subhra.  2022.  DIP Learning on CAS-Lock: Using Distinguishing Input Patterns for Attacking Logic Locking. 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). :688–693.
The globalization of the integrated circuit (IC) manufacturing industry has lured the adversary to come up with numerous malicious activities in the IC supply chain. Logic locking has risen to prominence as a proactive defense strategy against such threats. CAS-Lock (proposed in CHES'20), is an advanced logic locking technique that harnesses the concept of single-point function in providing SAT-attack resiliency. It is claimed to be powerful and efficient enough in mitigating existing state-of-the-art attacks against logic locking techniques. Despite the security robustness of CAS-Lock as claimed by the authors, we expose a serious vulnerability and by exploiting the same we devise a novel attack algorithm against CAS-Lock. The proposed attack can not only reveal the correct key but also the exact AND/OR structure of the implemented CAS-Lock design along with all the key gates utilized in both the blocks of CAS-Lock. It simply relies on the externally observable Distinguishing Input Patterns (DIPs) pertaining to a carefully chosen key simulation of the locked design without the requirement of structural analysis of any kind of the locked netlist. Our attack is successful against various AND/OR cascaded-chain configurations of CAS-Lock and reports 100% success rate in recovering the correct key. It has an attack complexity of \$\textbackslashmathcalO(m)\$, where \$m\$ denotes the number of DIPs obtained for an incorrect key simulation.
ISSN: 1558-1101
Venkatesh, Suresh, Saeidi, Hooman, Sengupta, Kaushik, Lu, Xuyang.  2022.  Millimeter-Wave Physical Layer Security through Space-Time Modulated Transmitter Arrays. 2022 IEEE 22nd Annual Wireless and Microwave Technology Conference (WAMICON). :1–4.
Wireless security and privacy is gaining a significant interest due to the burgeoning growth of communication devices across the electromagnetic spectrum. In this article, we introduce the concept of the space-time modulated millimeter-wave wireless links enabling physical layer security in highspeed communication links. Such an approach does not require cryptographic key exchanges and enables security in a seamless fashion with no overhead on latency. We show both the design and implementation of such a secure system using custom integrated chips at 71-76 GHz with off-chip packaged antenna array. We also demonstrate the security metric of such a system and analyze the efficacy through distributed eavesdropper attack.
Moon, S. J., Nagalingam, D., Ngow, Y. T., Quah, A. C. T..  2022.  Combining Enhanced Diagnostic-Driven Analysis Scheme and Static Near Infrared Photon Emission Microscopy for Effective Scan Failure Debug. 2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). :1–6.
Software based scan diagnosis is the de facto method for debugging logic scan failures. Physical analysis success rate is high on dies diagnosed with maximum score, one symptom, one suspect and shorter net. This poses a limitation on maximum utilization of scan diagnosis data for PFA. There have been several attempts to combine dynamic fault isolation techniques with scan diagnosis results to enhance the utilization and success rate. However, it is not a feasible approach for foundry due to limited product design and test knowledge and hardware requirements such as probe card and tester. Suitable for a foundry, an enhanced diagnosis-driven analysis scheme was proposed in [1] that classifies the failures as frontend-of-line (FEOL) and backend-of-line (BEOL) improving the die selection process for PFA. In this paper, static NIR PEM and defect prediction approach are applied on dies that are already classified as FEOL and BEOL failures yet considered unsuitable for PFA due to low score, multiple symptoms, and suspects. Successful case studies are highlighted to showcase the effectiveness of using static NIR PEM as the next level screening process to further maximize the scan diagnosis data utilization.
Jiang, Baoxiang, Liu, Yang, Liu, Huixiang, Ren, Zehua, Wang, Yun, Bao, Yuanyi, Wang, Wenqing.  2022.  An Enhanced EWMA for Alert Reduction and Situation Awareness in Industrial Control Networks. 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE). :888–894.

Intrusion detection systems (IDSs) are widely deployed in the industrial control systems to protect network security. IDSs typically generate a huge number of alerts, which are time-consuming for system operators to process. Most of the alerts are individually insignificant false alarms. However, it is not the best solution to discard these alerts, as they can still provide useful information about network situation. Based on the study of characteristics of alerts in the industrial control systems, we adopt an enhanced method of exponentially weighted moving average (EWMA) control charts to help operators in processing alerts. We classify all detection signatures as regular and irregular according to their frequencies, set multiple control limits to detect anomalies, and monitor regular signatures for network security situational awareness. Extensive experiments have been performed using real-world alert data. Simulation results demonstrate that the proposed enhanced EWMA method can greatly reduce the volume of alerts to be processed while reserving significant abnormal information.

Milov, Oleksandr, Khvostenko, Vladyslav, Natalia, Voropay, Korol, Olha, Zviertseva, Nataliia.  2022.  Situational Control of Cyber Security in Socio-Cyber-Physical Systems. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–6.

The features of socio-cyber-physical systems are presented, which dictate the need to revise traditional management methods and transform the management system in such a way that it takes into account the presence of a person both in the control object and in the control loop. The use of situational control mechanisms is proposed. The features of this approach and its comparison with existing methods of situational awareness are presented. The comparison has demonstrated wider possibilities and scope for managing socio-cyber-physical systems. It is recommended to consider a wider class of types of relations that exist in socio-cyber-physical systems. It is indicated that such consideration can be based on the use of pseudo-physical logics considered in situational control. It is pointed out that it is necessary to design a classifier of situations (primarily in cyberspace), instead of traditional classifiers of threats and intruders.

Kareem, Husam, Almousa, Khaleel, Dunaev, Dmitriy.  2022.  Matlab GUI-based Tool to Determine Performance Metrics of Physical Unclonable Functions. 2022 Cybernetics & Informatics (K&I). :1—5.
This paper presents a MATLAB Graphical User Interface (GUI) based tool that determines the performance evaluation metrics of the physically unclonable functions (PUFs). The PUFs are hardware security primitives which can be utilized in several hardware security applications like integrated circuits protection, device authentication, secret key generation, and hardware obfuscation. Like any other technology approach, PUFs evaluation requires testing different performance metrics, each of which can be determined by at least one mathematical equation. The proposed tool (PUFs Tool) reads the PUF instances’ output and then computes and generates the values of the main PUFs’ performance metrics: uniqueness, reliability, uniformity, and bit-aliasing. In addition, it generates a bar code for each PUF instance considered in the evaluation process. The PUFs Tool is designed and developed using the app designer of MATLAB software 2021b.
Collini, Luca, Karri, Ramesh, Pilato, Christian.  2022.  A Composable Design Space Exploration Framework to Optimize Behavioral Locking. 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). :1359—1364.
Globalization of the integrated circuit (IC) supply chain exposes designs to security threats such as reverse engineering and intellectual property (IP) theft. Designers may want to protect specific high-level synthesis (HLS) optimizations or micro-architectural solutions of their designs. Hence, protecting the IP of ICs is essential. Behavioral locking is an approach to thwart these threats by operating at high levels of abstraction instead of reasoning on the circuit structure. Like any security protection, behavioral locking requires additional area. Existing locking techniques have a different impact on security and overhead, but they do not explore the effects of alternatives when making locking decisions. We develop a design-space exploration (DSE) framework to optimize behavioral locking for a given security metric. For instance, we optimize differential entropy under area or key-bit constraints. We define a set of heuristics to score each locking point by analyzing the system dependence graph of the design. The solution yields better results for 92% of the cases when compared to baseline, state-of-the-art (SOTA) techniques. The approach has results comparable to evolutionary DSE while requiring 100× to 400× less computational time.
Faramondi, Luca, Grassi, Marta, Guarino, Simone, Setola, Roberto, Alcaraz, Cristina.  2022.  Configuration vulnerability in SNORT for Windows Operating Systems. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :82–89.
Cyber-attacks against Industrial Control Systems (ICS) can lead to catastrophic events which can be prevented by the use of security measures such as the Intrusion Prevention Systems (IPS). In this work we experimentally demonstrate how to exploit the configuration vulnerabilities of SNORT one of the most adopted IPSs to significantly degrade the effectiveness of the IPS and consequently allowing successful cyber-attacks. We illustrate how to design a batch script able to retrieve and modify the configuration files of SNORT in order to disable its ability to detect and block Denial of Service (DoS) and ARP poisoning-based Man-In-The-Middle (MITM) attacks against a Programmable Logic Controller (PLC) in an ICS network. Experimental tests performed on a water distribution testbed show that, despite the presence of IPS, the DoS and ARP spoofed packets reach the destination causing respectively the disconnection of the PLC from the ICS network and the modification of packets payload.
Rathor, Mahendra, Sarkar, Pallabi, Mishra, Vipul Kumar, Sengupta, Anirban.  2020.  Securing IP Cores in CE Systems using Key-driven Hash-chaining based Steganography. 2020 IEEE 10th International Conference on Consumer Electronics (ICCE-Berlin). :1—4.
Digital signal processor (DSP) intellectual property (IP) cores are the underlying hardware responsible for high performance data intensive applications. However an unauthorized IP vendor may counterfeit the DSP IPs and infuse them into the design-chain. Thus fake IPs or integrated circuits (ICs) are unknowingly integrated into consumer electronics (CE) systems, leading to reliability and safety issues for users. The latent solution to this threat is hardware steganography wherein vendor's secret information is covertly inserted into the design to enable detection of counterfeiting. A key-regulated hash-modules chaining based IP steganography is presented in our paper to secure against counterfeiting threat. The proposed approach yielded a robust steganography achieving very high security with regard to stego-key length than previous approaches.