Visible to the public Biblio

Filters: Keyword is integrated circuits  [Clear All Filters]
2015-05-05
Sabaliauskaite, G., Mathur, A.P..  2014.  Countermeasures to Enhance Cyber-physical System Security and Safety. Computer Software and Applications Conference Workshops (COMPSACW), 2014 IEEE 38th International. :13-18.

An application of two Cyber-Physical System (CPS) security countermeasures - Intelligent Checker (IC) and Cross-correlator - for enhancing CPS safety and achieving required CPS safety integrity level is presented. ICs are smart sensors aimed at detecting attacks in CPS and alerting the human operators. Cross-correlator is an anomaly detection technique for detecting deception attacks. We show how ICs could be implemented at three different CPS safety protection layers to maintain CPS in a safe state. In addition, we combine ICs with the cross-correlator technique to assure high probability of failure detection. Performance simulations show that a combination of these two security countermeasures is effective in detecting and mitigating CPS failures, including catastrophic failures.
 

2015-04-30
Cioranesco, J.-M., Danger, J.-L., Graba, T., Guilley, S., Mathieu, Y., Naccache, D., Xuan Thuy Ngo.  2014.  Cryptographically secure shields. Hardware-Oriented Security and Trust (HOST), 2014 IEEE International Symposium on. :25-31.

Probing attacks are serious threats on integrated circuits. Security products often include a protective layer called shield that acts like a digital fence. In this article, we demonstrate a new shield structure that is cryptographically secure. This shield is based on the newly proposed SIMON lightweight block cipher and independent mesh lines to ensure the security against probing attacks of the hardware located behind the shield. Such structure can be proven secure against state-of-the-art invasive attacks. For the first time in the open literature, we describe a chip designed with a digital shield, and give an extensive report of its cost, in terms of power, metal layer(s) to sacrifice and of logic (including the logic to connect it to the CPU). Also, we explain how “Through Silicon Vias” (TSV) technology can be used for the protection against both frontside and backside probing.

Guizani, S..  2014.  Security applications challenges of RFID technology and possible countermeasures. Computing, Management and Telecommunications (ComManTel), 2014 International Conference on. :291-297.

Radio Frequency IDentification (RFID) is a technique for speedy and proficient identification system, it has been around for more than 50 years and was initially developed for improving warfare machinery. RFID technology bridges two technologies in the area of Information and Communication Technologies (ICT), namely Product Code (PC) technology and Wireless technology. This broad-based rapidly expanding technology impacts business, environment and society. The operating principle of an RFID system is as follows. The reader starts a communication process by radiating an electromagnetic wave. This wave will be intercepted by the antenna of the RFID tag, placed on the item to be identified. An induced current will be created at the tag and will activate the integrated circuit, enabling it to send back a wave to the reader. The reader redirects information to the host where it will be processed. RFID is used for wide range of applications in almost every field (Health, education, industry, security, management ...). In this review paper, we will focus on agricultural and environmental applications.

Shila, D.M., Venugopal, V..  2014.  Design, implementation and security analysis of Hardware Trojan Threats in FPGA. Communications (ICC), 2014 IEEE International Conference on. :719-724.

Hardware Trojan Threats (HTTs) are stealthy components embedded inside integrated circuits (ICs) with an intention to attack and cripple the IC similar to viruses infecting the human body. Previous efforts have focused essentially on systems being compromised using HTTs and the effectiveness of physical parameters including power consumption, timing variation and utilization for detecting HTTs. We propose a novel metric for hardware Trojan detection coined as HTT detectability metric (HDM) that uses a weighted combination of normalized physical parameters. HTTs are identified by comparing the HDM with an optimal detection threshold; if the monitored HDM exceeds the estimated optimal detection threshold, the IC will be tagged as malicious. As opposed to existing efforts, this work investigates a system model from a designer perspective in increasing the security of the device and an adversary model from an attacker perspective exposing and exploiting the vulnerabilities in the device. Using existing Trojan implementations and Trojan taxonomy as a baseline, seven HTTs were designed and implemented on a FPGA testbed; these Trojans perform a variety of threats ranging from sensitive information leak, denial of service to beat the Root of Trust (RoT). Security analysis on the implemented Trojans showed that existing detection techniques based on physical characteristics such as power consumption, timing variation or utilization alone does not necessarily capture the existence of HTTs and only a maximum of 57% of designed HTTs were detected. On the other hand, 86% of the implemented Trojans were detected with HDM. We further carry out analytical studies to determine the optimal detection threshold that minimizes the summation of false alarm and missed detection probabilities.

2014-09-26
Armknecht, F., Maes, R., Sadeghi, A, Standaert, O.-X., Wachsmann, C..  2011.  A Formalization of the Security Features of Physical Functions. Security and Privacy (SP), 2011 IEEE Symposium on. :397-412.

Physical attacks against cryptographic devices typically take advantage of information leakage (e.g., side-channels attacks) or erroneous computations (e.g., fault injection attacks). Preventing or detecting these attacks has become a challenging task in modern cryptographic research. In this context intrinsic physical properties of integrated circuits, such as Physical(ly) Unclonable Functions (PUFs), can be used to complement classical cryptographic constructions, and to enhance the security of cryptographic devices. PUFs have recently been proposed for various applications, including anti-counterfeiting schemes, key generation algorithms, and in the design of block ciphers. However, currently only rudimentary security models for PUFs exist, limiting the confidence in the security claims of PUF-based security primitives. A useful model should at the same time (i) define the security properties of PUFs abstractly and naturally, allowing to design and formally analyze PUF-based security solutions, and (ii) provide practical quantification tools allowing engineers to evaluate PUF instantiations. In this paper, we present a formal foundation for security primitives based on PUFs. Our approach requires as little as possible from the physics and focuses more on the main properties at the heart of most published works on PUFs: robustness (generation of stable answers), unclonability (not provided by algorithmic solutions), and unpredictability. We first formally define these properties and then show that they can be achieved by previously introduced PUF instantiations. We stress that such a consolidating work allows for a meaningful security analysis of security primitives taking advantage of physical properties, becoming increasingly important in the development of the next generation secure information systems.