Visible to the public Biblio

Filters: Keyword is threat model  [Clear All Filters]
Rivera, S., Lagraa, S., State, R..  2019.  ROSploit: Cybersecurity Tool for ROS. 2019 Third IEEE International Conference on Robotic Computing (IRC). :415—416.

Robotic Operating System(ROS) security research is currently in a preliminary state, with limited research in tools or models. Considering the trend of digitization of robotic systems, this lack of foundational knowledge increases the potential threat posed by security vulnerabilities in ROS. In this article, we present a new tool to assist further security research in ROS, ROSploit. ROSploit is a modular two-pronged offensive tool covering both reconnaissance and exploitation of ROS systems, designed to assist researchers in testing exploits for ROS.

Chernov, Denis, Sychugov, Alexey.  2019.  Development of a Mathematical Model of Threat to Information Security of Automated Process Control Systems. 2019 International Russian Automation Conference (RusAutoCon). :1—5.
The authors carry out the analysis of the process of modeling threats to information security of automated process control systems. Basic principles of security threats model formation are considered. The approach to protection of automated process control systems based on the Shtakelberg game in a strategic form was modeled. An abstract mathematical model of information security threats to automated process control systems was developed. A formalized representation of a threat model is described, taking into account an intruder's potential. Presentation of the process of applying the described threat model in the form of a continuous Deming-Shewhart cycle is proposed.
Yulianto, Arief Dwi, Sukarno, Parman, Warrdana, Aulia Arif, Makky, Muhammad Al.  2019.  Mitigation of Cryptojacking Attacks Using Taint Analysis. 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE). :234—238.

Cryptojacking (also called malicious cryptocurrency mining or cryptomining) is a new threat model using CPU resources covertly “mining” a cryptocurrency in the browser. The impact is a surge in CPU Usage and slows the system performance. In this research, in-browsercryptojacking mitigation has been built as an extension in Google Chrome using Taint analysis method. The method used in this research is attack modeling with abuse case using the Man-In-The-Middle (MITM) attack as a testing for mitigation. The proposed model is designed so that users will be notified if a cryptojacking attack occurs. Hence, the user is able to check the script characteristics that run on the website background. The results of this research show that the taint analysis is a promising method to mitigate cryptojacking attacks. From 100 random sample websites, the taint analysis method can detect 19 websites that are infcted by cryptojacking.

Jacomme, Charlie, Kremer, Steve.  2018.  An Extensive Formal Analysis of Multi-factor Authentication Protocols. 2018 IEEE 31st Computer Security Foundations Symposium (CSF). :1–15.
Passwords are still the most widespread means for authenticating users, even though they have been shown to create huge security problems. This motivated the use of additional authentication mechanisms used in so-called multi-factor authentication protocols. In this paper we define a detailed threat model for this kind of protocols: while in classical protocol analysis attackers control the communication network, we take into account that many communications are performed over TLS channels, that computers may be infected by different kinds of malwares, that attackers could perform phishing, and that humans may omit some actions. We formalize this model in the applied pi calculus and perform an extensive analysis and comparison of several widely used protocols - variants of Google 2-step and FIDO's U2F. The analysis is completely automated, generating systematically all combinations of threat scenarios for each of the protocols and using the P ROVERIF tool for automated protocol analysis. Our analysis highlights weaknesses and strengths of the different protocols, and allows us to suggest several small modifications of the existing protocols which are easy to implement, yet improve their security in several threat scenarios.
Ming, Liang, Zhao, Gang, Huang, Minhuan, Kuang, Xiaohui, Li, Hu, Zhang, Ming.  2018.  Security Analysis of Intelligent Transportation Systems Based on Simulation Data. 2018 1st International Conference on Data Intelligence and Security (ICDIS). :184—187.

Modern vehicles in Intelligent Transportation Systems (ITS) can communicate with each other as well as roadside infrastructure units (RSUs) in order to increase transportation efficiency and road safety. For example, there are techniques to alert drivers in advance about traffic incidents and to help them avoid congestion. Threats to these systems, on the other hand, can limit the benefits of these technologies. Securing ITS itself is an important concern in ITS design and implementation. In this paper, we provide a security model of ITS which extends the classic layered network security model with transportation security and information security, and gives a reference for designing ITS architectures. Based on this security model, we also present a classification of ITS threats for defense. Finally a proof-of-concept example with malicious nodes in an ITS system is also given to demonstrate the impact of attacks. We analyzed the threat of malicious nodes and their effects to commuters, like increasing toll fees, travel distances, and travel times etc. Experimental results from simulations based on Veins shows the threats will bring about 43.40% more total toll fees, 39.45% longer travel distances, and 63.10% more travel times.

Meyer, D., Haase, J., Eckert, M., Klauer, B..  2017.  New Attack Vectors for Building Automation and IoT. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. :8126–8131.

In the past the security of building automation solely depended on the security of the devices inside or tightly connected to the building. In the last years more devices evolved using some kind of cloud service as a back-end or providers supplying some kind of device to the user. Also, the number of building automation systems connected to the Internet for management, control, and data storage increases every year. These developments cause the appearance of new threats on building automation. As Internet of Thing (IoT) and building automation intertwine more and more these threats are also valid for IoT installations. The paper presents new attack vectors and new threats using the threat model of Meyer et al.[1].

Backes, M., Keefe, K., Valdes, A..  2017.  A microgrid ontology for the analysis of cyber-physical security. 2017 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.
The IEC 61850 protocol suite for electrical sub-station automation enables substation configuration and design for protection, communication, and control. These power system applications can be formally verified through use of object models, common data classes, and message classes. The IEC 61850-7-420 DER (Distributed Energy Resource) extension further defines object classes for assets such as types of DER (e.g., energy storage, photovoltaic), DER unit controllers, and other DER-associated devices (e.g., inverter). These object classes describe asset-specific attributes such as state of charge, capacity limits, and ramp rate. Attributes can be fixed (rated capacity of the device) dynamic (state of charge), or binary (on or off, dispatched or off-line, operational or fault state). We sketch out a proposed ontology based on the 61850 and 61850-7-420 DER object classes to model threats against a micro-grid, which is an electrical system consisting of controllable loads and distributed generation that can function autonomously (in island mode) or connected to a larger utility grid. We consider threats against the measurements on which the control loop is based, as well as attacks against the control directives and the communication infrastructure. We use this ontology to build a threat model using the ADversary View Security Evaluation (ADVISE) framework, which enables identification of attack paths based on adversary objectives (for example, destabilize the entire micro-grid by reconnecting to the utility without synchronization) and helps identify defender strategies. Furthermore, the ADVISE method provides quantitative security metrics that can help inform trade-off decisions made by system architects and controls.
Hossain, M., Hasan, R., Zawoad, S..  2017.  Trust-IoV: A Trustworthy Forensic Investigation Framework for the Internet of Vehicles (IoV). 2017 IEEE International Congress on Internet of Things (ICIOT). :25–32.

The Internet of Vehicles (IoV) is a complex and dynamic mobile network system that enables information sharing between vehicles, their surrounding sensors, and clouds. While IoV opens new opportunities in various applications and services to provide safety on the road, it introduces new challenges in the field of digital forensics investigations. The existing tools and procedures of digital forensics cannot meet the highly distributed, decentralized, dynamic, and mobile infrastructures of the IoV. Forensic investigators will face challenges while identifying necessary pieces of evidence from the IoV environment, and collecting and analyzing the evidence. In this article, we propose TrustIoV - a digital forensic framework for the IoV systems that provides mechanisms to collect and store trustworthy evidence from the distributed infrastructure. Trust-IoV maintains a secure provenance of the evidence to ensure the integrity of the stored evidence and allows investigators to verify the integrity of the evidence during an investigation. Our experimental results on a simulated environment suggest that Trust-IoV can operate with minimal overhead while ensuring the trustworthiness of evidence in a strong adversarial scenario.

Kumar, S. A. P., Bhargava, B., Macêdo, R., Mani, G..  2017.  Securing IoT-Based Cyber-Physical Human Systems against Collaborative Attacks. 2017 IEEE International Congress on Internet of Things (ICIOT). :9–16.

Security issues in the IoT based CPS are exacerbated with human participation in CPHS due to the vulnerabilities in both the technologies and the human involvement. A holistic framework to mitigate security threats in the IoT-based CPHS environment is presented to mitigate these issues. We have developed threat model involving human elements in the CPHS environment. Research questions, directions, and ideas with respect to securing IoT based CPHS against collaborative attacks are presented.

Pacheco, J., Zhu, X., Badr, Y., Hariri, S..  2017.  Enabling Risk Management for Smart Infrastructures with an Anomaly Behavior Analysis Intrusion Detection System. 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS*W). :324–328.

The Internet of Things (IoT) connects not only computers and mobile devices, but it also interconnects smart buildings, homes, and cities, as well as electrical grids, gas, and water networks, automobiles, airplanes, etc. However, IoT applications introduce grand security challenges due to the increase in the attack surface. Current security approaches do not handle cybersecurity from a holistic point of view; hence a systematic cybersecurity mechanism needs to be adopted when designing IoTbased applications. In this work, we present a risk management framework to deploy secure IoT-based applications for Smart Infrastructures at the design time and the runtime. At the design time, we propose a risk management method that is appropriate for smart infrastructures. At the design time, our framework relies on the Anomaly Behavior Analysis (ABA) methodology enabled by the Autonomic Computing paradigm and an intrusion detection system to detect any threat that can compromise IoT infrastructures by. Our preliminary experimental results show that our framework can be used to detect threats and protect IoT premises and services.

Luh, Robert, Schrittwieser, Sebastian, Marschalek, Stefan.  2016.  TAON: An Ontology-based Approach to Mitigating Targeted Attacks. Proceedings of the 18th International Conference on Information Integration and Web-based Applications and Services. :303–312.

Targeted attacks on IT systems are a rising threat against the confidentiality of sensitive data and the availability of systems and infrastructures. Planning for the eventuality of a data breach or sabotage attack has become an increasingly difficult task with the emergence of advanced persistent threats (APTs), a class of highly sophisticated cyber-attacks that are nigh impossible to detect using conventional signature-based systems. Understanding, interpreting, and correlating the particulars of such advanced targeted attacks is a major research challenge that needs to be tackled before behavior-based approaches can evolve from their current state to truly semantics-aware solutions. Ontologies offer a versatile foundation well suited for depicting the complex connections between such behavioral data and the diverse technical and organizational properties of an IT system. In order to facilitate the development of novel behavior-based detection systems, we present TAON, an OWL-based ontology offering a holistic view on actors, assets, and threat details, which are mapped to individual abstracted events and anomalies that can be detected by today's monitoring data providers. TOAN offers a straightforward means to plan an organization's defense against APTs and helps to understand how, why, and by whom certain resources are targeted. Populated by concrete data, the proposed ontology becomes a smart correlation framework able to combine several data sources into a semantic assessment of any targeted attack.

Phuong Cao, University of Illinois at Urbana-Champaign, Eric Badger, University of Illinois at Urbana-Champaign, Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, Ravishankar Iyer, University of Illinois at Urbana-Champaign.  2016.  A Framework for Generation, Replay and Analysis of Real-World Attack Variants. Symposium and Bootcamp for the Science of Security (HotSoS 2016).

This paper presents a framework for (1) generating variants of known attacks, (2) replaying attack variants in an isolated environment and, (3) validating detection capabilities of attack detection techniques against the variants. Our framework facilitates reproducible security experiments. We generated 648 variants of three real-world attacks (observed at the National Center for Supercomputing Applications at the University of Illinois). Our experiment showed the value of generating attack variants by quantifying the detection capabilities of three detection methods: a signature-based detection technique, an anomaly-based detection technique, and a probabilistic graphical model-based technique.