Visible to the public Biblio

Found 340 results

Filters: Keyword is Intrusion detection  [Clear All Filters]
2021-10-12
Dawit, Nahom Aron, Mathew, Sujith Samuel, Hayawi, Kadhim.  2020.  Suitability of Blockchain for Collaborative Intrusion Detection Systems. 2020 12th Annual Undergraduate Research Conference on Applied Computing (URC). :1–6.
Cyber-security is indispensable as malicious incidents are ubiquitous on the Internet. Intrusion Detection Systems have an important role in detecting and thwarting cyber-attacks. However, it is more effective in a centralized system but not in peer-to-peer networks which makes it subject to central point failure, especially in collaborated intrusion detection systems. The novel blockchain technology assures a fully distributed security system through its powerful features of transparency, immutability, decentralization, and provenance. Therefore, in this paper, we investigate and demonstrate several methods of collaborative intrusion detection with blockchain to analyze the suitability and security of blockchain for collaborative intrusion detection systems. We also studied the difference between the existing means of the integration of intrusion detection systems with blockchain and categorized the major vulnerabilities of blockchain with their potential losses and current enhancements for mitigation.
2021-10-04
Moustafa, Nour, Keshky, Marwa, Debiez, Essam, Janicke, Helge.  2020.  Federated TONİoT Windows Datasets for Evaluating AI-Based Security Applications. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :848–855.
Existing cyber security solutions have been basically developed using knowledge-based models that often cannot trigger new cyber-attack families. With the boom of Artificial Intelligence (AI), especially Deep Learning (DL) algorithms, those security solutions have been plugged-in with AI models to discover, trace, mitigate or respond to incidents of new security events. The algorithms demand a large number of heterogeneous data sources to train and validate new security systems. This paper presents the description of new datasets, the so-called ToNİoT, which involve federated data sources collected from Telemetry datasets of IoT services, Operating system datasets of Windows and Linux, and datasets of Network traffic. The paper introduces the testbed and description of TONİoT datasets for Windows operating systems. The testbed was implemented in three layers: edge, fog and cloud. The edge layer involves IoT and network devices, the fog layer contains virtual machines and gateways, and the cloud layer involves cloud services, such as data analytics, linked to the other two layers. These layers were dynamically managed using the platforms of software-Defined Network (SDN) and Network-Function Virtualization (NFV) using the VMware NSX and vCloud NFV platform. The Windows datasets were collected from audit traces of memories, processors, networks, processes and hard disks. The datasets would be used to evaluate various AI-based cyber security solutions, including intrusion detection, threat intelligence and hunting, privacy preservation and digital forensics. This is because the datasets have a wide range of recent normal and attack features and observations, as well as authentic ground truth events. The datasets can be publicly accessed from this link [1].
2021-09-30
Latif, Shahid, Idrees, Zeba, Zou, Zhuo, Ahmad, Jawad.  2020.  DRaNN: A Deep Random Neural Network Model for Intrusion Detection in Industrial IoT. 2020 International Conference on UK-China Emerging Technologies (UCET). :1–4.
Industrial Internet of Things (IIoT) has arisen as an emerging trend in the industrial sector. Millions of sensors present in IIoT networks generate a massive amount of data that can open the doors for several cyber-attacks. An intrusion detection system (IDS) monitors real-time internet traffic and identify the behavior and type of network attacks. In this paper, we presented a deep random neural (DRaNN) based scheme for intrusion detection in IIoT. The proposed scheme is evaluated by using a new generation IIoT security dataset UNSW-NB15. Experimental results prove that the proposed model successfully classified nine different types of attacks with a low false-positive rate and great accuracy of 99.54%. To validate the feasibility of the proposed scheme, experimental results are also compared with state-of-the-art deep learning-based intrusion detection schemes. The proposed model achieved a higher attack detection rate of 99.41%.
Pamukov, Marin, Poulkov, Vladimir, Shterev, Vasil.  2020.  NSNN Algorithm Performance with Different Neural Network Architectures. 2020 43rd International Conference on Telecommunications and Signal Processing (TSP). :280–284.
Internet of Things (IoT) development and the addition of billions of computationally limited devices prohibit the use of classical security measures such as Intrusion Detection Systems (IDS). In this paper, we study the influence of the implementation of different feed-forward type of Neural Networks (NNs) on the detection Rate of the Negative Selection Neural Network (NSNN) algorithm. Feed-forward and cascade forward NN structures with different number of neurons and different number of hidden layers are tested. For training and testing the NSNN algorithm the labeled KDD NSL dataset is applied. The detection rates provided by the algorithm with several NN structures to determine the optimal solution are calculated and compared. The results show how these different feed-forward based NN architectures impact the performance of the NSNN algorithm.
2021-09-21
Brzezinski Meyer, Maria Laura, Labit, Yann.  2020.  Combining Machine Learning and Behavior Analysis Techniques for Network Security. 2020 International Conference on Information Networking (ICOIN). :580–583.
Network traffic attacks are increasingly common and varied, this is a big problem especially when the target network is centralized. The creation of IDS (Intrusion Detection Systems) capable of detecting various types of attacks is necessary. Machine learning algorithms are widely used in the classification of data, bringing a good result in the area of computer networks. In addition, the analysis of entropy and distance between data sets are also very effective in detecting anomalies. However, each technique has its limitations, so this work aims to study their combination in order to improve their performance and create a new intrusion detection system capable of well detect some of the most common attacks. Reliability indices will be used as metrics to the combination decision and they will be updated in each new dataset according to the decision made earlier.
Zhe, Wang, Wei, Cheng, Chunlin, Li.  2020.  DoS attack detection model of smart grid based on machine learning method. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :735–738.
In recent years, smart grid has gradually become the common development trend of the world's power industry, and its security issues are increasingly valued by researchers. Smart grids have applied technologies such as physical control, data encryption, and authentication to improve their security, but there is still a lack of timely and effective detection methods to prevent the grid from being threatened by malicious intrusions. Aiming at this problem, a model based on machine learning to detect smart grid DoS attacks has been proposed. The model first collects network data, secondly selects features and uses PCA for data dimensionality reduction, and finally uses SVM algorithm for abnormality detection. By testing the SVM, Decision Tree and Naive Bayesian Network classification algorithms on the KDD99 dataset, it is found that the SVM model works best.
Swarna Sugi, S. Shinly, Ratna, S. Raja.  2020.  Investigation of Machine Learning Techniques in Intrusion Detection System for IoT Network. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :1164–1167.
Internet of Things (IoT) combines the internet and physical objects to transfer information among the objects. In the emerging IoT networks, providing security is the major issue. IoT device is exposed to various security issues due to its low computational efficiency. In recent years, the Intrusion Detection System valuable tool deployed to secure the information in the network. This article exposes the Intrusion Detection System (IDS) based on deep learning and machine learning to overcome the security attacks in IoT networks. Long Short-Term Memory (LSTM) and K-Nearest Neighbor (KNN) are used in the attack detection model and performances of those algorithms are compared with each other based on detection time, kappa statistic, geometric mean, and sensitivity. The effectiveness of the developed IDS is evaluated by using Bot-IoT datasets.
2021-09-16
Qurashi, Mohammed Al, Angelopoulos, Constantinos Marios, Katos, Vasilios.  2020.  An Architecture for Resilient Intrusion Detection in IoT Networks. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–7.
We introduce a lightweight architecture of Intrusion Detection Systems (IDS) for ad-hoc IoT networks. Current state-of-the-art IDS have been designed based on assumptions holding from conventional computer networks, and therefore, do not properly address the nature of IoT networks. In this work, we first identify the correlation between the communication overheads and the placement of an IDS (as captured by proper placement of active IDS agents in the network). We model such networks as Random Geometric Graphs. We then introduce a novel IDS architectural approach by having only a minimum subset of the nodes acting as IDS agents. These nodes are able to monitor the network and detect attacks at the networking layer in a collaborative manner by monitoring 1-hop network information provided by routing protocols such as RPL. Conducted experiments show that our proposed IDS architecture is resilient and robust against frequent topology changes due to node failures. Our detailed experimental evaluation demonstrates significant performance gains in terms of communication overhead and energy dissipation while maintaining high detection rates.
Almohri, Hussain M. J., Watson, Layne T., Evans, David.  2020.  An Attack-Resilient Architecture for the Internet of Things. IEEE Transactions on Information Forensics and Security. 15:3940–3954.
With current IoT architectures, once a single device in a network is compromised, it can be used to disrupt the behavior of other devices on the same network. Even though system administrators can secure critical devices in the network using best practices and state-of-the-art technology, a single vulnerable device can undermine the security of the entire network. The goal of this work is to limit the ability of an attacker to exploit a vulnerable device on an IoT network and fabricate deceitful messages to co-opt other devices. The approach is to limit attackers by using device proxies that are used to retransmit and control network communications. We present an architecture that prevents deceitful messages generated by compromised devices from affecting the rest of the network. The design assumes a centralized and trustworthy machine that can observe the behavior of all devices on the network. The central machine collects application layer data, as opposed to low-level network traffic, from each IoT device. The collected data is used to train models that capture the normal behavior of each individual IoT device. The normal behavioral data is then used to monitor the IoT devices and detect anomalous behavior. This paper reports on our experiments using both a binary classifier and a density-based clustering algorithm to model benign IoT device behavior with a realistic test-bed, designed to capture normal behavior in an IoT-monitored environment. Results from the IoT testbed show that both the classifier and the clustering algorithms are promising and encourage the use of application-level data for detecting compromised IoT devices.
Conference Name: IEEE Transactions on Information Forensics and Security
2021-09-08
Gupta, Anushikha, Kalra, Mala.  2020.  Intrusion Detection and Prevention System Using Cuckoo Search Algorithm with ANN in Cloud Computing. 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC). :66–72.
The Security is a vital aspect of cloud service as it comprises of data that belong to multiple users. Cloud service providers are responsible for maintaining data integrity, confidentiality and availability. They must ensure that their infrastructure and data are protected from intruders. In this research work Intrusion Detection System is designed to detect malicious server by using Cuckoo Search (CS) along with Artificial Intelligence. CS is used for feature optimization with the help of fitness function, the server's nature is categorized into two types: normal and attackers. On the basis of extracted features, ANN classify the attackers which affect the networks in cloud environment. The main aim is to distinguish attacker servers that are affected by DoS/DDoS, Black and Gray hole attacks from the genuine servers. Thus, instead of passing data to attacker server, the server passes the data to the genuine servers and hence, the system is protected. To validate the performance of the system, QoS parameters such as PDR (Packet delivery rate), energy consumption rate and total delay before and after prevention algorithm are measured. When compared with existing work, the PDR and the delay have been enhanced by 3.0 %and 21.5 %.
Yamanoue, Takashi, Murakami, Junya.  2020.  Development of an Intrusion Detection System Using a Botnet with the R Statistical Computing System. 2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI). :59–62.
Development of an intrusion detection system, which tries to detect signs of technology of malware, is discussed. The system can detect signs of technology of malware such as peer to peer (P2P) communication, DDoS attack, Domain Generation Algorithm (DGA), and network scanning. The system consists of beneficial botnet and the R statistical computing system. The beneficial botnet is a group of Wiki servers, agent bots and analyzing bots. The script in a Wiki page of the Wiki server controls an agent bot or an analyzing bot. An agent bot is placed between a LAN and its gateway. It can capture every packet between hosts in the LAN and hosts behind the gateway from the LAN. An analyzing bot can be placed anywhere in the LAN or WAN if it can communicate with the Wiki server for controlling the analyzing bot. The analyzing bot has R statistical computing system and it can analyze data which is collected by agent bots.
2021-09-07
Huang, Weiqing, Peng, Xiao, Shi, Zhixin, Ma, Yuru.  2020.  Adversarial Attack against LSTM-Based DDoS Intrusion Detection System. 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI). :686–693.
Nowadays, machine learning is a popular method for DDoS detection. However, machine learning algorithms are very vulnerable under the attacks of adversarial samples. Up to now, multiple methods of generating adversarial samples have been proposed. However, they cannot be applied to LSTM-based DDoS detection directly because of the discrete property and the utility requirement of its input samples. In this paper, we propose two methods to generate DDoS adversarial samples, named Genetic Attack (GA) and Probability Weighted Packet Saliency Attack (PWPSA) respectively. Both methods modify original input sample by inserting or replacing partial packets. In GA, we evolve a set of modified samples with genetic algorithm and find the evasive variant from it. In PWPSA, we modify original sample iteratively and use the position saliency as well as the packet score to determine insertion or replacement order at each step. Experimental results on CICIDS2017 dataset show that both methods can bypass DDoS detectors with high success rate.
Sudugala, A.U, Chanuka, W.H, Eshan, A.M.N, Bandara, U.C.S, Abeywardena, K.Y.  2020.  WANHEDA: A Machine Learning Based DDoS Detection System. 2020 2nd International Conference on Advancements in Computing (ICAC). 1:380–385.
In today's world computer communication is used almost everywhere and majority of them are connected to the world's largest network, the Internet. There is danger in using internet due to numerous cyber-attacks which are designed to attack Confidentiality, Integrity and Availability of systems connected to the internet. One of the most prominent threats to computer networking is Distributed Denial of Service (DDoS) Attack. They are designed to attack availability of the systems. Many users and ISPs are targeted and affected regularly by these attacks. Even though new protection technologies are continuously proposed, this immense threat continues to grow rapidly. Most of the DDoS attacks are undetectable because they act as legitimate traffic. This situation can be partially overcome by using Intrusion Detection Systems (IDSs). There are advanced attacks where there is no proper documented way to detect. In this paper authors present a Machine Learning (ML) based DDoS detection mechanism with improved accuracy and low false positive rates. The proposed approach gives inductions based on signatures previously extracted from samples of network traffic. Authors perform the experiments using four distinct benchmark datasets, four machine learning algorithms to address four of the most harmful DDoS attack vectors. Authors achieved maximum accuracy and compared the results with other applicable machine learning algorithms.
Hossain, Md Delwar, Inoue, Hiroyuki, Ochiai, Hideya, FALL, Doudou, Kadobayashi, Youki.  2020.  Long Short-Term Memory-Based Intrusion Detection System for In-Vehicle Controller Area Network Bus. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :10–17.
The Controller Area Network (CAN) bus system works inside connected cars as a central system for communication between electronic control units (ECUs). Despite its central importance, the CAN does not support an authentication mechanism, i.e., CAN messages are broadcast without basic security features. As a result, it is easy for attackers to launch attacks at the CAN bus network system. Attackers can compromise the CAN bus system in several ways: denial of service, fuzzing, spoofing, etc. It is imperative to devise methodologies to protect modern cars against the aforementioned attacks. In this paper, we propose a Long Short-Term Memory (LSTM)-based Intrusion Detection System (IDS) to detect and mitigate the CAN bus network attacks. We first inject attacks at the CAN bus system in a car that we have at our disposal to generate the attack dataset, which we use to test and train our model. Our results demonstrate that our classifier is efficient in detecting the CAN attacks. We achieved a detection accuracy of 99.9949%.
Sami, Muhammad, Ibarra, Matthew, Esparza, Anamaria C., Al-Jufout, Saleh, Aliasgari, Mehrdad, Mozumdar, Mohammad.  2020.  Rapid, Multi-vehicle and Feed-forward Neural Network based Intrusion Detection System for Controller Area Network Bus. 2020 IEEE Green Energy and Smart Systems Conference (IGESSC). :1–6.
In this paper, an Intrusion Detection System (IDS) in the Controller Area Network (CAN) bus of modern vehicles has been proposed. NESLIDS is an anomaly detection algorithm based on the supervised Deep Neural Network (DNN) architecture that is designed to counter three critical attack categories: Denial-of-service (DoS), fuzzy, and impersonation attacks. Our research scope included modifying DNN parameters, e.g. number of hidden layer neurons, batch size, and activation functions according to how well it maximized detection accuracy and minimized the false positive rate (FPR) for these attacks. Our methodology consisted of collecting CAN Bus data from online and in real-time, injecting attack data after data collection, preprocessing in Python, training the DNN, and testing the model with different datasets. Results show that the proposed IDS effectively detects all attack types for both types of datasets. NESLIDS outperforms existing approaches in terms of accuracy, scalability, and low false alarm rates.
Kalkan, Soner Can, Sahingoz, Ozgur Koray.  2020.  In-Vehicle Intrusion Detection System on Controller Area Network with Machine Learning Models. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
Parallel with the developing world, transportation technologies have started to expand and change significantly year by year. This change brings with it some inevitable problems. Increasing human population and growing transportation-needs result many accidents in urban and rural areas, and this recursively results extra traffic problems and fuel consumption. It is obvious that the issues brought by this spiral loop needed to be solved with the use of some new technological achievements. In this context, self-driving cars or automated vehicles concepts are seen as a good solution. However, this also brings some additional problems with it. Currently many cars are provided with some digital security systems, which are examined in two phases, internal and external. These systems are constructed in the car by using some type of embedded system (such as the Controller Area Network (CAN)) which are needed to be protected form outsider cyberattacks. These attack can be detected by several ways such as rule based system, anomaly based systems, list based systems, etc. The current literature showed that researchers focused on the use of some artificial intelligence techniques for the detection of this type of attack. In this study, an intrusion detection system based on machine learning is proposed for the CAN security, which is the in-vehicle communication structure. As a result of the study, it has been observed that the decision tree-based ensemble learning models results the best performance in the tested models. Additionally, all models have a very good accuracy levels.
Schell, Oleg, Kneib, Marcel.  2020.  VALID: Voltage-Based Lightweight Intrusion Detection for the Controller Area Network. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :225–232.
The Controller Area Network (CAN), a broadcasting bus for intra-vehicle communication, does not provide any security mechanisms, although it is implemented in almost every vehicle. Attackers can exploit this issue, transmit malicious messages unnoticeably and cause severe harm. As the utilization of Message Authentication Codes (MACs) is only possible to a limited extent in resource-constrained systems, the focus is put on the development of Intrusion Detection Systems (IDSs). Due to their simple idea of operation, current developments are increasingly utilizing physical signal properties like voltages to realize these systems. Although the feasibility for CAN-based networks could be demonstrated, the least approaches consider the constrained resource-availability of vehicular hardware. To close this gap, we present Voltage-Based Lightweight Intrusion Detection (VALID), which provides physics-based intrusion detection with low resource requirements. By utilizing solely the individual voltage levels on the network during communication, the system detects unauthorized message transmissions without any sophisticated sampling approaches and feature calculations. Having performed evaluations on data from two real vehicles, we show that VALID is not only able to detect intrusions with an accuracy of 99.54 %, but additionally is capable of identifying the attack source reliably. These properties make VALID one of the most lightweight intrusion detection approaches that is ready-to-use, as it can be easily implemented on hardware already installed in vehicles and does not require any further components. Additionally, this allows existing platforms to be retrofitted and vehicular security systems to be improved and extended.
2021-08-17
Tseng, Chia-Wei, Wu, Li-Fan, Hsu, Shih-Chun, Yu, Sheng-Wang.  2020.  IPv6 DoS Attacks Detection Using Machine Learning Enhanced IDS in SDN/NFV Environment. 2020 21st Asia-Pacific Network Operations and Management Symposium (APNOMS). :263–266.
The rapid growth of IPv6 traffic makes security issues become more important. This paper proposes an IPv6 network security system that integrates signature-based Intrusion Detection Systems (IDS) and machine learning classification technologies to improve the accuracy of IPv6 denial-of-service (DoS) attacks detection. In addition, this paper has also enhanced IPv6 network security defense capabilities through software-defined networking (SDN) and network function virtualization (NFV) technologies. The experimental results prove that the detection and defense mechanisms proposed in this paper can effectively strengthen IPv6 network security.
Byrnes, Jeffrey, Hoang, Thomas, Mehta, Nihal Nitin, Cheng, Yuan.  2020.  A Modern Implementation of System Call Sequence Based Host-based Intrusion Detection Systems. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :218—225.
Much research is concentrated on improving models for host-based intrusion detection systems (HIDS). Typically, such research aims at improving a model's results (e.g., reducing the false positive rate) in the familiar static training/testing environment using the standard data sources. Matching advancements in the machine learning community, researchers in the syscall HIDS domain have developed many complex and powerful syscall-based models to serve as anomaly detectors. These models typically show an impressive level of accuracy while emphasizing on minimizing the false positive rate. However, with each proposed model iteration, we get further from the setting in which these models are intended to operate. As kernels become more ornate and hardened, the implementation space for anomaly detection models is narrowing. Furthermore, the rapid advancement of operating systems and the underlying complexity introduced dictate that the sometimes decades-old datasets have long been obsolete. In this paper, we attempt to bridge the gap between theoretical models and their intended application environments by examining the recent Linux kernel 5.7.0-rc1. In this setting, we examine the feasibility of syscall-based HIDS in modern operating systems and the constraints imposed on the HIDS developer. We discuss how recent advancements to the kernel have eliminated the previous syscall trace collect method of writing syscall table wrappers, and propose a new approach to generate data and place our detection model. Furthermore, we present the specific execution time and memory constraints that models must meet in order to be operable within their intended settings. Finally, we conclude with preliminary results from our model, which primarily show that in-kernel machine learning models are feasible, depending on their complexity.
2021-08-11
Ferrag, Mohamed Amine, Maglaras, Leandros.  2020.  DeepCoin: A Novel Deep Learning and Blockchain-Based Energy Exchange Framework for Smart Grids. IEEE Transactions on Engineering Management. 67:1285–1297.
In this paper, we propose a novel deep learning and blockchain-based energy framework for smart grids, entitled DeepCoin. The DeepCoin framework uses two schemes, a blockchain-based scheme and a deep learning-based scheme. The blockchain-based scheme consists of five phases: setup phase, agreement phase, creating a block phase and consensus-making phase, and view change phase. It incorporates a novel reliable peer-to-peer energy system that is based on the practical Byzantine fault tolerance algorithm and it achieves high throughput. In order to prevent smart grid attacks, the proposed framework makes the generation of blocks using short signatures and hash functions. The proposed deep learning-based scheme is an intrusion detection system (IDS), which employs recurrent neural networks for detecting network attacks and fraudulent transactions in the blockchain-based energy network. We study the performance of the proposed IDS on three different sources the CICIDS2017 dataset, a power system dataset, and a web robot (Bot)-Internet of Things (IoT) dataset.
Stan, Orly, Cohen, Adi, Elovici, Yuval, Shabtai, Asaf.  2020.  Intrusion Detection System for the MIL-STD-1553 Communication Bus. IEEE Transactions on Aerospace and Electronic Systems. 56:3010–3027.
MIL-STD-1553 is a military standard that defines the specification of a serial communication bus that has been implemented in military and aerospace avionic platforms for over 40 years. MIL-STD-1553 was designed for a high level of fault tolerance while less attention was paid to cyber security issues. Thus, as indicated in recent studies, it is exposed to various threats. In this article, we suggest enhancing the security of MIL-STD-1553 communication buses by integrating a machine learning-based intrusion detection system (IDS); such anIDS will be capable of detecting cyber attacks in real time. The IDS consists of two modules: 1) a remote terminal (RT) authentication module that detects illegitimately connected components and data transfers and 2) a sequence-based anomaly detection module that detects anomalies in the operation of the system. The IDS showed high detection rates for both normal and abnormal behavior when evaluated in a testbed using real 1553 hardware, as well as a very fast and accurate training process using logs from a real system. The RT authentication module managed to authenticate RTs with +0.99 precision and +0.98 recall; and detect illegitimate component (or a legitimate component that impersonates other components) with +0.98 precision and +0.99 recall. The sequence-based anomaly detection module managed to perfectly detect both normal and abnormal behavior. Moreover, the sequencebased anomaly detection module managed to accurately (i.e., zero false positives) model the normal behavior of a real system in a short period of time ( 22 s).
Flora, José.  2020.  Improving the Security of Microservice Systems by Detecting and Tolerating Intrusions. 2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). :131–134.
Microservice architectures adoption is growing expeditiously in market size and adoption, including in business-critical systems. This is due to agility in development and deployment further increased by containers and their characteristics. Ensuring security is still a major concern due to challenges faced such as resource separation and isolation, as improper access to one service might compromise complete systems. This doctoral work intends to advance the security of microservice systems through research and improvement of methodologies for detection, tolerance and mitigation of security intrusions, while overcoming challenges related to multi-tenancy, heterogeneity, dynamicity of systems and environments. Our preliminary research shows that host-based IDSes are applicable in container environments. This will be extended to dynamic scenarios, serving as a steppingstone to research intrusion tolerance techniques suited to these environments. These methodologies will be demonstrated in realistic microservice systems: complex, dynamic, scalable and elastic.
Saeed, Imtithal A., Selamat, Ali, Rohani, Mohd Foad, Krejcar, Ondrej, Chaudhry, Junaid Ahsenali.  2020.  A Systematic State-of-the-Art Analysis of Multi-Agent Intrusion Detection. IEEE Access. 8:180184–180209.
Multi-agent architectures have been successful in attaining considerable attention among computer security researchers. This is so, because of their demonstrated capabilities such as autonomy, embedded intelligence, learning and self-growing knowledge-base, high scalability, fault tolerance, and automatic parallelism. These characteristics have made this technology a de facto standard for developing ambient security systems to meet the open and dynamic nature of today's online communities. Although multi-agent architectures are increasingly studied in the area of computer security, there is still not enough empirical evidence on their performance in intrusions and attacks detection. The aim of this paper is to report the systematic literature review conducted in the context of specific research questions, to investigate multi-agent IDS architectures to highlight the issues that affect their performance in terms of detection accuracy and response time. We used pertinent keywords and terms to search and retrieve the most recent research studies, on multi-agent IDS architectures, from the major research databases and digital libraries such as SCOPUS, Springer, and IEEE Explore. The search processes resulted in a number of studies; among them, there were journal articles, book chapters, conference papers, dissertations, and theses. The obtained studies were assessed and filtered out, and finally, there were over 71 studies chosen to answer the research questions. The results of this study have shown that multi-agent architectures include several advantages that can help in the development of ambient IDS. However, it has been found that there are several issues in the current multi-agent IDS architectures that may degrade the accuracy and response time of intrusions and attacks detection. Based on our findings, the issues of multi-agent IDS architectures include limitations in the techniques, mechanisms, and schemes used for multi-agent IDS adaptation and learning, load balancing, scalability, fault-tolerance, and high communication overhead. It has also been found that new measurement metrics are required for evaluating multi-agent IDS architectures.
2021-08-02
Fargo, Farah, Franza, Olivier, Tunc, Cihan, Hariri, Salim.  2020.  VM Introspection-based Allowlisting for IaaS. 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1—4.
Cloud computing has become the main backend of the IT infrastructure as it provides ubiquitous and on-demand computing to serve to a wide range of users including end-users and high-performance demanding agencies. The users can allocate and free resources allocated for their Virtual Machines (VMs) as needed. However, with the rapid growth of interest in cloud computing systems, several issues have arisen especially in the domain of cybersecurity. It is a known fact that not only the malicious users can freely allocate VMs, but also they can infect victims' VMs to run their own tools that include cryptocurrency mining, ransomware, or cyberattacks against others. Even though there exist intrusion detection systems (IDS), running an IDS on every VM can be a costly process and it would require fine configuration that only a small subset of the cloud users are knowledgeable about. Therefore, to overcome this challenge, in this paper we present a VM introspection based allowlisting method to be deployed and managed directly by the cloud providers to check if there are any malicious software running on the VMs with minimum user intervention. Our middleware monitors the processes and if it detects unknown events, it will notify the users and/or can take action as needed.
2021-07-08
Chaturvedi, Amit Kumar, Kumar, Punit, Sharma, Kalpana.  2020.  Proposing Innovative Intruder Detection System for Host Machines in Cloud Computing. 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART). :292—296.
There is very significant role of Virtualization in cloud computing. The physical hardware in the cloud computing reside with the host machine and the virtualization software runs on it. The virtualization allows virtual machines to exist. The host machine shares its physical components such as memory, storage, and processor ultimately to handle the needs of the virtual machines. If an attacker effectively compromises one VM, it could outbreak others on the same host on the network over long periods of time. This is an gradually more popular method for cross-virtual-machine attacks, since traffic between VMs cannot be examined by standard IDS/IPS software programs. As we know that the cloud environment is distributed in nature and hence more susceptible to various types of intrusion attacks which include installing malicious software and generating backdoors. In a cloud environment, where organizations have hosted important and critical data, the security of underlying technologies becomes critical. To alleviate the hazard to cloud environments, Intrusion Detection Systems (IDS) are a cover of defense. In this paper, we are proposing an innovative model for Intrusion Detection System for securing Host machines in cloud infrastructure. This proposed IDS has two important features: (1) signature based and (2) prompt alert system.