Visible to the public Biblio

Found 304 results

Filters: Keyword is anomaly detection  [Clear All Filters]
2023-05-26
Coshatt, Stephen J., Li, Qi, Yang, Bowen, Wu, Shushan, Shrivastava, Darpan, Ye, Jin, Song, WenZhan, Zahiri, Feraidoon.  2022.  Design of Cyber-Physical Security Testbed for Multi-Stage Manufacturing System. GLOBECOM 2022 - 2022 IEEE Global Communications Conference. :1978—1983.
As cyber-physical systems are becoming more wide spread, it is imperative to secure these systems. In the real world these systems produce large amounts of data. However, it is generally impractical to test security techniques on operational cyber-physical systems. Thus, there exists a need to have realistic systems and data for testing security of cyber-physical systems [1]. This is often done in testbeds and cyber ranges. Most cyber ranges and testbeds focus on traditional network systems and few incorporate cyber-physical components. When they do, the cyber-physical components are often simulated. In the systems that incorporate cyber-physical components, generally only the network data is analyzed for attack detection and diagnosis. While there is some study in using physical signals to detect and diagnosis attacks, this data is not incorporated into current testbeds and cyber ranges. This study surveys currents testbeds and cyber ranges and demonstrates a prototype testbed that includes cyber-physical components and sensor data in addition to traditional cyber data monitoring.
2023-04-14
Ghaffaripour, Shadan, Miri, Ali.  2022.  Parasite Chain Attack Detection in the IOTA Network. 2022 International Wireless Communications and Mobile Computing (IWCMC). :985–990.
Distributed ledger technologies (DLTs) based on Directed Acyclic Graphs (DAGs) have been gaining much attention due to their performance advantage over the traditional blockchain. IOTA is an example of DAG-based DLT that has shown its significance in the Internet of Things (IoT) environment. Despite that, IOTA is vulnerable to double-spend attacks, which threaten the immutability of the ledger. In this paper, we propose an efficient yet simple method for detecting a parasite chain, which is one form of attempting a double-spend attack in the IOTA network. In our method, a score function measuring the importance of each transaction in the IOTA network is employed. Any abrupt change in the importance of a transaction is reflected in the 1st and 2nd order derivatives of this score function, and therefore used in the calculation of an anomaly score. Due to how the score function is formulated, this anomaly score can be used in the detection of a particular type of parasite chain, characterized by sudden changes in the in-degree of a transaction in the IOTA graph. The experimental results demonstrate that the proposed method is accurate and linearly scalable in the number of edges in the network.
ISSN: 2376-6506
2023-03-31
Fan, Wenjun, Wuthier, Simeon, Hong, Hsiang-Jen, Zhou, Xiaobo, Bai, Yan, Chang, Sang-Yoon.  2022.  The Security Investigation of Ban Score and Misbehavior Tracking in Bitcoin Network. 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS). :191–201.
Bitcoin P2P networking is especially vulnerable to networking threats because it is permissionless and does not have the security protections based on the trust in identities, which enables the attackers to manipulate the identities for Sybil and spoofing attacks. The Bitcoin node keeps track of its peer’s networking misbehaviors through ban scores. In this paper, we investigate the security problems of the ban-score mechanism and discover that the ban score is not only ineffective against the Bitcoin Message-based DoS (BM-DoS) attacks but also vulnerable to the Defamation attack as the network adversary can exploit the ban score to defame innocent peers. To defend against these threats, we design an anomaly detection approach that is effective, lightweight, and tailored to the networking threats exploiting Bitcoin’s ban-score mechanism. We prototype our threat discoveries against a real-world Bitcoin node connected to the Bitcoin Mainnet and conduct experiments based on the prototype implementation. The experimental results show that the attacks have devastating impacts on the targeted victim while being cost-effective on the attacker side. For example, an attacker can ban a peer in two milliseconds and reduce the victim’s mining rate by hundreds of thousands of hash computations per second. Furthermore, to counter the threats, we empirically validate our detection countermeasure’s effectiveness and performances against the BM-DoS and Defamation attacks.
ISSN: 2575-8411
2023-03-17
Woralert, Chutitep, Liu, Chen, Blasingame, Zander.  2022.  HARD-Lite: A Lightweight Hardware Anomaly Realtime Detection Framework Targeting Ransomware. 2022 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1–6.
Recent years have witnessed a surge in ransomware attacks. Especially, many a new variant of ransomware has continued to emerge, employing more advanced techniques distributing the payload while avoiding detection. This renders the traditional static ransomware detection mechanism ineffective. In this paper, we present our Hardware Anomaly Realtime Detection - Lightweight (HARD-Lite) framework that employs semi-supervised machine learning method to detect ransomware using low-level hardware information. By using an LSTM network with a weighted majority voting ensemble and exponential moving average, we are able to take into consideration the temporal aspect of hardware-level information formed as time series in order to detect deviation in system behavior, thereby increasing the detection accuracy whilst reducing the number of false positives. Testing against various ransomware across multiple families, HARD-Lite has demonstrated remarkable effectiveness, detecting all cases tested successfully. What's more, with a hierarchical design that distributing the classifier from the user machine that is under monitoring to a server machine, Hard-Lite enables good scalability as well.
2023-02-17
Zhou, Qian, Dai, Hua, Liu, Liang, Shi, Kai, Chen, Jie, Jiang, Hong.  2022.  The final security problem in IOT: Don’t count on the canary!. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :599–604.
Memory-based vulnerabilities are becoming more and more common in low-power and low-cost devices in IOT. We study several low-level vulnerabilities that lead to memory corruption in C and C++ programs, and how to use stack corruption and format string attack to exploit these vulnerabilities. Automatic methods for resisting memory attacks, such as stack canary and address space layout randomization ASLR, are studied. These methods do not need to change the source program. However, a return-oriented programming (ROP) technology can bypass them. Control flow integrity (CFI) can resist the destruction of ROP technology. In fact, the security design is holistic. Finally, we summarize the rules of security coding in embedded devices, and propose two novel methods of software anomaly detection process for IOT devices in the future.
2023-01-20
Alkuwari, Ahmad N., Al-Kuwari, Saif, Qaraqe, Marwa.  2022.  Anomaly Detection in Smart Grids: A Survey From Cybersecurity Perspective. 2022 3rd International Conference on Smart Grid and Renewable Energy (SGRE). :1—7.
Smart grid is the next generation for power generation, consumption and distribution. However, with the introduction of smart communication in such sensitive components, major risks from cybersecurity perspective quickly emerged. This survey reviews and reports on the state-of-the-art techniques for detecting cyber attacks in smart grids, mainly through machine learning techniques.
2022-12-09
Al-Falouji, Ghassan, Gruhl, Christian, Neumann, Torben, Tomforde, Sven.  2022.  A Heuristic for an Online Applicability of Anomaly Detection Techniques. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :107—112.
OHODIN is an online extension for data streams of the kNN-based ODIN anomaly detection approach. It provides a detection-threshold heuristic that is based on extreme value theory. In contrast to sophisticated anomaly and novelty detection approaches the decision-making process of ODIN is interpretable by humans, making it interesting for certain applications. However, it is limited in terms of the underlying detection method. In this article, we present an extension of the OHODIN to further detection techniques to reinforce OHODIN capability of online data streams anomaly detection. We introduce the algorithm modifications and an experimental evaluation with competing state-of-the-art anomaly detection approaches.
Gualandi, Gabriele, Maggio, Martina, Vittorio Papadopoulos, Alessandro.  2022.  Optimization-based attack against control systems with CUSUM-based anomaly detection. 2022 30th Mediterranean Conference on Control and Automation (MED). :896—901.
Security attacks on sensor data can deceive a control system and force the physical plant to reach an unwanted and potentially dangerous state. Therefore, attack detection mechanisms are employed in cyber-physical control systems to detect ongoing attacks, the most prominent one being a threshold-based anomaly detection method called CUSUM. Literature defines the maximum impact of stealth attacks as the maximum deviation in the plant’s state that an undetectable attack can introduce, and formulates it as an optimization problem. This paper proposes an optimization-based attack with different saturation models, and it investigates how the attack duration significantly affects the impact of the attack on the state of the plant. We show that more dangerous attacks can be discovered when allowing saturation of the control system actuators. The proposed approach is compared with the geometric attack, showing how longer attack durations can lead to a greater impact of the attack while keeping the attack stealthy.
Sagar, Maloth, C, Vanmathi.  2022.  Network Cluster Reliability with Enhanced Security and Privacy of IoT Data for Anomaly Detection Using a Deep Learning Model. 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). :1670—1677.
Cyber Physical Systems (CPS), which contain devices to aid with physical infrastructure activities, comprise sensors, actuators, control units, and physical objects. CPS sends messages to physical devices to carry out computational operations. CPS mainly deals with the interplay among cyber and physical environments. The real-time network data acquired and collected in physical space is stored there, and the connection becomes sophisticated. CPS incorporates cyber and physical technologies at all phases. Cyber Physical Systems are a crucial component of Internet of Things (IoT) technology. The CPS is a traditional concept that brings together the physical and digital worlds inhabit. Nevertheless, CPS has several difficulties that are likely to jeopardise our lives immediately, while the CPS's numerous levels are all tied to an immediate threat, therefore necessitating a look at CPS security. Due to the inclusion of IoT devices in a wide variety of applications, the security and privacy of users are key considerations. The rising level of cyber threats has left current security and privacy procedures insufficient. As a result, hackers can treat every person on the Internet as a product. Deep Learning (DL) methods are therefore utilised to provide accurate outputs from big complex databases where the outputs generated can be used to forecast and discover vulnerabilities in IoT systems that handles medical data. Cyber-physical systems need anomaly detection to be secure. However, the rising sophistication of CPSs and more complex attacks means that typical anomaly detection approaches are unsuitable for addressing these difficulties since they are simply overwhelmed by the volume of data and the necessity for domain-specific knowledge. The various attacks like DoS, DDoS need to be avoided that impact the network performance. In this paper, an effective Network Cluster Reliability Model with enhanced security and privacy levels for the data in IoT for Anomaly Detection (NSRM-AD) using deep learning model is proposed. The security levels of the proposed model are contrasted with the proposed model and the results represent that the proposed model performance is accurate
Ikeda, Yoshiki, Sawada, Kenji.  2022.  Anomaly Detection and Anomaly Location Model for Multiple Attacks Using Finite Automata. 2022 IEEE International Conference on Consumer Electronics (ICCE). :01—06.
In control systems, the operation of the system after an incident occurs is important. This paper proposes to design a whitelist model that can detect anomalies and identify locations of anomalous actuators using finite automata during multiple actuators attack. By applying this model and comparing the whitelist model with the operation data, the monitoring system detects anomalies and identifies anomaly locations of actuator that deviate from normal operation. We propose to construct a whitelist model focusing on the order of the control system operation using binary search trees, which can grasp the state of the system when anomalies occur. We also apply combinatorial compression based on BDD (Binary Decision Diagram) to the model to speed up querying and identification of abnormalities. Based on the model designed in this study, we aim to construct a secured control system that selects and executes an appropriate fallback operation based on the state of the system when anomaly is detected.
2022-12-01
Andersen, Erik, Chiarandini, Marco, Hassani, Marwan, Jänicke, Stefan, Tampakis, Panagiotis, Zimek, Arthur.  2022.  Evaluation of Probability Distribution Distance Metrics in Traffic Flow Outlier Detection. 2022 23rd IEEE International Conference on Mobile Data Management (MDM). :64—69.

Recent approaches have proven the effectiveness of local outlier factor-based outlier detection when applied over traffic flow probability distributions. However, these approaches used distance metrics based on the Bhattacharyya coefficient when calculating probability distribution similarity. Consequently, the limited expressiveness of the Bhattacharyya coefficient restricted the accuracy of the methods. The crucial deficiency of the Bhattacharyya distance metric is its inability to compare distributions with non-overlapping sample spaces over the domain of natural numbers. Traffic flow intensity varies greatly, which results in numerous non-overlapping sample spaces, rendering metrics based on the Bhattacharyya coefficient inappropriate. In this work, we address this issue by exploring alternative distance metrics and showing their applicability in a massive real-life traffic flow data set from 26 vital intersections in The Hague. The results on these data collected from 272 sensors for more than two years show various advantages of the Earth Mover's distance both in effectiveness and efficiency.

2022-11-08
Javaheripi, Mojan, Samragh, Mohammad, Fields, Gregory, Javidi, Tara, Koushanfar, Farinaz.  2020.  CleaNN: Accelerated Trojan Shield for Embedded Neural Networks. 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD). :1–9.
We propose Cleann, the first end-to-end framework that enables online mitigation of Trojans for embedded Deep Neural Network (DNN) applications. A Trojan attack works by injecting a backdoor in the DNN while training; during inference, the Trojan can be activated by the specific backdoor trigger. What differentiates Cleann from the prior work is its lightweight methodology which recovers the ground-truth class of Trojan samples without the need for labeled data, model retraining, or prior assumptions on the trigger or the attack. We leverage dictionary learning and sparse approximation to characterize the statistical behavior of benign data and identify Trojan triggers. Cleann is devised based on algorithm/hardware co-design and is equipped with specialized hardware to enable efficient real-time execution on resource-constrained embedded platforms. Proof of concept evaluations on Cleann for the state-of-the-art Neural Trojan attacks on visual benchmarks demonstrate its competitive advantage in terms of attack resiliency and execution overhead.
2022-09-30
Xin, Chen, Xianda, Liu, Yiheng, Jiang, Chen, Wang.  2021.  The Trust Evaluation and Anomaly Detection Model of Industrial Control Equipment Based on Multiservice and Multi-attribute. 2021 7th International Conference on Computer and Communications (ICCC). :1575–1581.
In the industrial control system, in order to solve the problem that the installation of smart devices in a transparent environment are faced with the unknown attack problems, because most of the industrial control equipment to detect unknown risks, Therefore, by studying the security protection of the current industrial control system and the trust mechanism that should be widely used in the Internet of things, this paper presents the abnormal node detection mode based on comprehensive trust applied to the industrial control system scenarios. This model firstly proposes a model, which fuses direct and indirect trust values into current trust values through support algorithm and vector similarity algorithm, and then combines them with historical trust values, and gives the calculation method of each trust value. Finally, a method to determine abnormal nodes based on comprehensive trust degree is given to realize a detection process for all industrial control nodes. By analyzing the real data case provided by Melbourne Water, it is concluded that this model can improve the detection range and detection accuracy of abnormal nodes. It can accurately judge and effectively resist malicious behavior and also have a good resistance to aggression.
Burgetová, Ivana, Matoušek, Petr, Ryšavý, Ondřej.  2021.  Anomaly Detection of ICS Communication Using Statistical Models. 2021 17th International Conference on Network and Service Management (CNSM). :166–172.
Industrial Control System (ICS) transmits control and monitoring data between devices in an industrial environment that includes smart grids, water and gas distribution, or traffic control. Unlike traditional internet communication, ICS traffic is stable, periodical, and with regular communication patterns that can be described using statistical modeling. By observing selected features of ICS transmission, e.g., packet direction and inter-arrival times, we can create a statistical profile of the communication based on distribution of features learned from the normal ICS traffic. This paper demonstrates that using statistical modeling, we can detect various anomalies caused by irregular transmissions, device or link failures, and also cyber attacks like packet injection, scanning, or denial of service (DoS). The paper shows how a statistical model is automatically created from a training dataset. We present two types of statistical profiles: the master-oriented profile for one-to-many communication and the peer-to-peer profile that describes traffic between two ICS devices. The proposed approach is fast and easy to implement as a part of an intrusion detection system (IDS) or an anomaly detection (AD) module. The proof-of-concept is demonstrated on two industrial protocols: IEC 60870-5-104 (aka IEC 104) and IEC 61850 (Goose).
Baptiste, Millot, Julien, Francq, Franck, Sicard.  2021.  Systematic and Efficient Anomaly Detection Framework using Machine Learning on Public ICS Datasets. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :292–297.
Industrial Control Systems (ICSs) are used in several domains such as Transportation, Manufacturing, Defense and Power Generation and Distribution. ICSs deal with complex physical systems in order to achieve an industrial purpose with operational safety. Security has not been taken into account by design in these systems that makes them vulnerable to cyberattacks.In this paper, we rely on existing public ICS datasets as well as on the existing literature of Machine Learning (ML) applications for anomaly detection in ICSs in order to improve detection scores. To perform this purpose, we propose a systematic framework, relying on established ML algorithms and suitable data preprocessing methods, which allows us to quickly get efficient, and surprisingly, better results than the literature. Finally, some recommendations for future public ICS dataset generations end this paper, which would be fruitful for improving future attack detection models and then protect new ICSs designed in the next future.
Wüstrich, Lars, Schröder, Lukas, Pahl, Marc-Oliver.  2021.  Cyber-Physical Anomaly Detection for ICS. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :950–955.
Industrial Control Systems (ICS) are complex systems made up of many components with different tasks. For a safe and secure operation, each device needs to carry out its tasks correctly. To monitor a system and ensure the correct behavior of systems, anomaly detection is used.Models of expected behavior often rely only on cyber or physical features for anomaly detection. We propose an anomaly detection system that combines both types of features to create a dynamic fingerprint of an ICS. We present how a cyber-physical anomaly detection using sound on the physical layer can be designed, and which challenges need to be overcome for a successful implementation. We perform an initial evaluation for identifying actions of a 3D printer.
Matoušek, Petr, Havlena, Vojtech, Holík, Lukáš.  2021.  Efficient Modelling of ICS Communication For Anomaly Detection Using Probabilistic Automata. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :81–89.
Industrial Control System (ICS) communication transmits monitoring and control data between industrial processes and the control station. ICS systems cover various domains of critical infrastructure such as the power plants, water and gas distribution, or aerospace traffic control. Security of ICS systems is usually implemented on the perimeter of the network using ICS enabled firewalls or Intrusion Detection Systems (IDSs). These techniques are helpful against external attacks, however, they are not able to effectively detect internal threats originating from a compromised device with malicious software. In order to mitigate or eliminate internal threats against the ICS system, we need to monitor ICS traffic and detect suspicious data transmissions that differ from common operational communication. In our research, we obtain ICS monitoring data using standardized IPFIX flows extended with meta data extracted from ICS protocol headers. Unlike other anomaly detection approaches, we focus on modelling the semantics of ICS communication obtained from the IPFIX flows that describes typical conversational patterns. This paper presents a technique for modelling ICS conversations using frequency prefix trees and Deterministic Probabilistic Automata (DPA). As demonstrated on the attack scenarios, these models are efficient to detect common cyber attacks like the command injection, packet manipulation, network scanning, or lost connection. An important advantage of our approach is that the proposed technique can be easily integrated into common security information and event management (SIEM) systems with Netflow/IPFIX support. Our experiments are performed on IEC 60870-5-104 (aka IEC 104) control communication that is widely used for the substation control in smart grids.
Yu, Dongqing, Hou, Xiaowei, Li, Ce, Lv, Qiujian, Wang, Yan, Li, Ning.  2021.  Anomaly Detection in Unstructured Logs Using Attention-based Bi-LSTM Network. 2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC). :403–407.
System logs record valuable information about the runtime status of IT systems. Therefore, system logs are a naturally excellent source of information for anomaly detection. Most of the existing studies on log-based anomaly detection construct a detection model to identify anomalous logs. Generally, the model treats historical logs as natural language sequences and learns the normal patterns from normal log sequences, and detects deviations from normal patterns as anomalies. However, the majority of existing methods focus on sequential and quantitative information and ignore semantic information hidden in log sequence so that they are inefficient in anomaly detection. In this paper, we propose a novel framework for automatically detecting log anomalies by utilizing an attention-based Bi-LSTM model. To demonstrate the effectiveness of our proposed model, we evaluate the performance on a public production log dataset. Extensive experimental results show that the proposed approach outperforms all comparison methods for anomaly detection.
2022-09-20
Wang, Xuelei, Fidge, Colin, Nourbakhsh, Ghavameddin, Foo, Ernest, Jadidi, Zahra, Li, Calvin.  2021.  Feature Selection for Precise Anomaly Detection in Substation Automation Systems. 2021 13th IEEE PES Asia Pacific Power & Energy Engineering Conference (APPEEC). :1—6.
With the rapid advancement of the electrical grid, substation automation systems (SASs) have been developing continuously. However, with the introduction of advanced features, such as remote control, potential cyber security threats in SASs are also increased. Additionally, crucial components in SASs, such as protection relays, usually come from third-party vendors and may not be fully trusted. Untrusted devices may stealthily perform harmful or unauthorised behaviours which could compromise or damage SASs, and therefore, bring adverse impacts to the primary plant. Thus, it is necessary to detect abnormal behaviours from an untrusted device before it brings about catastrophic impacts. Anomaly detection techniques are suitable to detect anomalies in SASs as they only bring minimal side-effects to normal system operations. Many researchers have developed various machine learning algorithms and mathematical models to improve the accuracy of anomaly detection. However, without prudent feature selection, it is difficult to achieve high accuracy when detecting attacks launched from internal trusted networks, especially for stealthy message modification attacks which only modify message payloads slightly and imitate patterns of benign behaviours. Therefore, this paper presents choices of features which improve the accuracy of anomaly detection within SASs, especially for detecting “stealthy” attacks. By including two additional features, Boolean control data from message payloads and physical values from sensors, our method improved the accuracy of anomaly detection by decreasing the false-negative rate from 25% to 5% approximately.
Li, Zeyi, Wang, Yun, Wang, Pan, Su, Haorui.  2021.  PGAN:A Generative Adversarial Network based Anomaly Detection Method for Network Intrusion Detection System. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :734—741.
With the rapid development of communication net-work, the types and quantities of network traffic data have in-creased substantially. What followed was the frequent occurrence of versatile cyber attacks. As an important part of network security, the network-based intrusion detection system (NIDS) can monitor and protect the network equippments and terminals in real time. The traditional detection methods based on deep learning (DL) are always in supervised manners in NIDS, which can automatically build end-to-end detection model without man-ual feature extraction and selection by domain experts. However, supervised learning methods require large-scale labeled data, yet capturing large labeled datasets is a very cubersome, tedious and time-consuming manual task. Instead, unsupervised learning is an effective way to overcome this problem. Nonetheless, the ex-isting unsupervised methods are prone to low detection efficiency and are difficult to train. In this paper we propose a novel NIDS method called PGAN based on generative adversarial network (GAN) to detect the abnormal traffic from the perspective of Anomaly Detection, which leverage the competitive speciality of adversarial training to learn the normal traffic. Based on the public dataset CICIDS2017, three experimental results show that PGAN can significantly outperform other unsupervised methods like stacked autoencoder (SAE) and isolation forest (IF).
2022-08-26
Liu, Nathan, Moreno, Carlos, Dunne, Murray, Fischmeister, Sebastian.  2021.  vProfile: Voltage-Based Anomaly Detection in Controller Area Networks. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). :1142–1147.
Modern cars are becoming more accessible targets for cyberattacks due to the proliferation of wireless communication channels. The intra-vehicle Controller Area Network (CAN) bus lacks authentication, which exposes critical components to interference from less secure, wirelessly compromised modules. To address this issue, we propose vProfile, a sender authentication system based on voltage fingerprints of Electronic Control Units (ECUs). vProfile exploits the physical properties of ECU output voltages on the CAN bus to determine the authenticity of bus messages, which enables the detection of both hijacked ECUs and external devices connected to the bus. We show the potential of vProfile using experiments on two production vehicles with precision and recall scores of over 99.99%. The improved identification rates and more straightforward design of vProfile make it an attractive improvement over existing methods.
Ricks, Brian, Tague, Patrick, Thuraisingham, Bhavani.  2021.  DDoS-as-a-Smokescreen: Leveraging Netflow Concurrency and Segmentation for Faster Detection. 2021 Third IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :217—224.
In the ever evolving Internet threat landscape, Distributed Denial-of-Service (DDoS) attacks remain a popular means to invoke service disruption. DDoS attacks, however, have evolved to become a tool of deceit, providing a smokescreen or distraction while some other underlying attack takes place, such as data exfiltration. Knowing the intent of a DDoS, and detecting underlying attacks which may be present concurrently with it, is a challenging problem. An entity whose network is under a DDoS attack may not have the support personnel to both actively fight a DDoS and try to mitigate underlying attacks. Therefore, any system that can detect such underlying attacks should do so only with a high degree of confidence. Previous work utilizing flow aggregation techniques with multi-class anomaly detection showed promise in both DDoS detection and detecting underlying attacks ongoing during an active DDoS attack. In this work, we head in the opposite direction, utilizing flow segmentation and concurrent flow feature aggregation, with the primary goal of greatly reduced detection times of both DDoS and underlying attacks. Using the same multi-class anomaly detection approach, we show greatly improved detection times with promising detection performance.
2022-08-12
Gepperth, Alexander, Pfülb, Benedikt.  2021.  Image Modeling with Deep Convolutional Gaussian Mixture Models. 2021 International Joint Conference on Neural Networks (IJCNN). :1–9.
In this conceptual work, we present Deep Convolutional Gaussian Mixture Models (DCGMMs): a new formulation of deep hierarchical Gaussian Mixture Models (GMMs) that is particularly suitable for describing and generating images. Vanilla (i.e., flat) GMMs require a very large number of components to describe images well, leading to long training times and memory issues. DCGMMs avoid this by a stacked architecture of multiple GMM layers, linked by convolution and pooling operations. This allows to exploit the compositionality of images in a similar way as deep CNNs do. DCGMMs can be trained end-to-end by Stochastic Gradient Descent. This sets them apart from vanilla GMMs which are trained by Expectation-Maximization, requiring a prior k-means initialization which is infeasible in a layered structure. For generating sharp images with DCGMMs, we introduce a new gradient-based technique for sampling through non-invertible operations like convolution and pooling. Based on the MNIST and FashionMNIST datasets, we validate the DCGMMs model by demonstrating its superiority over flat GMMs for clustering, sampling and outlier detection.
2022-07-14
Rathod, Viraj, Parekh, Chandresh, Dholariya, Dharati.  2021.  AI & ML Based Anamoly Detection and Response Using Ember Dataset. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1–5.
In the era of rapid technological growth, malicious traffic has drawn increased attention. Most well-known offensive security assessment todays are heavily focused on pre-compromise. The amount of anomalous data in today's context is massive. Analyzing the data using primitive methods would be highly challenging. Solution to it is: If we can detect adversary behaviors in the early stage of compromise, one can prevent and safeguard themselves from various attacks including ransomwares and Zero-day attacks. Integration of new technologies Artificial Intelligence & Machine Learning with manual Anomaly Detection can provide automated machine-based detection which in return can provide the fast, error free, simplify & scalable Threat Detection & Response System. Endpoint Detection & Response (EDR) tools provide a unified view of complex intrusions using known adversarial behaviors to identify intrusion events. We have used the EMBER dataset, which is a labelled benchmark dataset. It is used to train machine learning models to detect malicious portable executable files. This dataset consists of features derived from 1.1 million binary files: 900,000 training samples among which 300,000 were malicious, 300,000 were benevolent, 300,000 un-labelled, and 200,000 evaluation samples among which 100K were malicious, 100K were benign. We have also included open-source code for extracting features from additional binaries, enabling the addition of additional sample features to the dataset.
2022-06-15
Fan, Wenjun, Chang, Sang-Yoon, Zhou, Xiaobo, Xu, Shouhuai.  2021.  ConMan: A Connection Manipulation-based Attack Against Bitcoin Networking. 2021 IEEE Conference on Communications and Network Security (CNS). :101–109.
Bitcoin is a representative cryptocurrency system using a permissionless peer-to-peer (P2P) network as its communication infrastructure. A number of attacks against Bitcoin have been discovered over the past years, including the Eclipse and EREBUS Attacks. In this paper, we present a new attack against Bitcoin’s P2P networking, dubbed ConMan because it leverages connection manipulation. ConMan achieves the same effect as the Eclipse and EREBUS Attacks in isolating a target (i.e., victim) node from the rest of the Bitcoin network. However, ConMan is different from these attacks because it is an active and deterministic attack, and is more effective and efficient. We validate ConMan through proof-of-concept exploitation in an environment that is coupled with real-world Bitcoin node functions. Experimental results show that ConMan only needs a few minutes to fully control the peer connections of a target node, which is in sharp contrast to the tens of days that are needed by the Eclipse and EREBUS Attacks. Further, we propose several countermeasures against ConMan. Some of them would be effective but incompatible with the design principles of Bitcoin, while the anomaly detection approach is positively achievable. We disclosed ConMan to the Bitcoin Core team and received their feedback, which confirms ConMan and the proposed countermeasures.