Visible to the public Biblio

Found 221 results

Filters: Keyword is anomaly detection  [Clear All Filters]
2021-05-03
Sohail, Muhammad, Zheng, Quan, Rezaiefar, Zeinab, Khan, Muhammad Alamgeer, Ullah, Rizwan, Tan, Xiaobin, Yang, Jian, Yuan, Liu.  2020.  Triangle Area Based Multivariate Correlation Analysis for Detecting and Mitigating Cache Pollution Attacks in Named Data Networking. 2020 3rd International Conference on Hot Information-Centric Networking (HotICN). :114–121.
The key feature of NDN is in-network caching that every router has its cache to store data for future use, thus improve the usage of the network bandwidth and reduce the network latency. However, in-network caching increases the security risks - cache pollution attacks (CPA), which includes locality disruption (ruining the cache locality by sending random requests for unpopular contents to make them popular) and False Locality (introducing unpopular contents in the router's cache by sending requests for a set of unpopular contents). In this paper, we propose a machine learning method, named Triangle Area Based Multivariate Correlation Analysis (TAB-MCA) that detects the cache pollution attacks in NDN. This detection system has two parts, the triangle-area-based MCA technique, and the threshold-based anomaly detection technique. The TAB-MCA technique is used to extract hidden geometrical correlations between two distinct features for all possible permutations and the threshold-based anomaly detection technique. This technique helps our model to be able to distinguish attacks from legitimate traffic records without requiring prior knowledge. Our technique detects locality disruption, false locality, and combination of the two with high accuracy. Implementation of XC-topology, the proposed method shows high efficiency in mitigating these attacks. In comparison to other ML-methods, our proposed method has a low overhead cost in mitigating CPA as it doesn't require attackers' prior knowledge. Additionally, our method can also detect non-uniform attack distributions.
2021-04-27
Yu, X., Li, T., Hu, A..  2020.  Time-series Network Anomaly Detection Based on Behaviour Characteristics. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :568–572.
In the application scenarios of cloud computing, big data, and mobile Internet, covert and diverse network attacks have become a serious problem that threatens the security of enterprises and personal information assets. Abnormal network behaviour detection based on network behaviour characteristics has become an important means to protect network security. However, existing frameworks do not make full use of the characteristics of the correlation between continuous network behaviours, and do not use an algorithm that can process time-series data or process the original feature set into time-series data to match the algorithm. This paper proposes a time-series abnormal network behaviour detection framework. The framework consists of two parts: an algorithm model (DBN-BiGRU) that combines Deep Belief Network (DBN) and Bidirectional Gated Recurrent Unit (BiGRU), and a pre-processing scheme that processes the original feature analysis files of CICIDS2017 to good time-series data. This detection framework uses past and future behaviour information to determine current behaviours, which can improve accuracy, and can adapt to the large amount of existing network traffic and high-dimensional characteristics. Finally, this paper completes the training of the algorithm model and gets the test results. Experimental results show that the prediction accuracy of this framework is as high as 99.82%, which is better than the traditional frameworks that do not use time-series information.
2021-04-08
Yang, Z., Sun, Q., Zhang, Y., Zhu, L., Ji, W..  2020.  Inference of Suspicious Co-Visitation and Co-Rating Behaviors and Abnormality Forensics for Recommender Systems. IEEE Transactions on Information Forensics and Security. 15:2766—2781.
The pervasiveness of personalized collaborative recommender systems has shown the powerful capability in a wide range of E-commerce services such as Amazon, TripAdvisor, Yelp, etc. However, fundamental vulnerabilities of collaborative recommender systems leave space for malicious users to affect the recommendation results as the attackers desire. A vast majority of existing detection methods assume certain properties of malicious attacks are given in advance. In reality, improving the detection performance is usually constrained due to the challenging issues: (a) various types of malicious attacks coexist, (b) limited representations of malicious attack behaviors, and (c) practical evidences for exploring and spotting anomalies on real-world data are scarce. In this paper, we investigate a unified detection framework in an eye for an eye manner without being bothered by the details of the attacks. Firstly, co-visitation and co-rating graphs are constructed using association rules. Then, attribute representations of nodes are empirically developed from the perspectives of linkage pattern, structure-based property and inherent association of nodes. Finally, both attribute information and connective coherence of graph are combined in order to infer suspicious nodes. Extensive experiments on both synthetic and real-world data demonstrate the effectiveness of the proposed detection approach compared with competing benchmarks. Additionally, abnormality forensics metrics including distribution of rating intention, time aggregation of suspicious ratings, degree distributions before as well as after removing suspicious nodes and time series analysis of historical ratings, are provided so as to discover interesting findings such as suspicious nodes (items or ratings) on real-world data.
Igbe, O., Saadawi, T..  2018.  Insider Threat Detection using an Artificial Immune system Algorithm. 2018 9th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :297—302.
Insider threats result from legitimate users abusing their privileges, causing tremendous damage or losses. Malicious insiders can be the main threats to an organization. This paper presents an anomaly detection system for detecting insider threat activities in an organization using an ensemble that consists of negative selection algorithms (NSA). The proposed system classifies a selected user activity into either of two classes: "normal" or "malicious." The effectiveness of our proposed detection system is evaluated using case studies from the computer emergency response team (CERT) synthetic insider threat dataset. Our results show that the proposed method is very effective in detecting insider threats.
Bouzar-Benlabiod, L., Rubin, S. H., Belaidi, K., Haddar, N. E..  2020.  RNN-VED for Reducing False Positive Alerts in Host-based Anomaly Detection Systems. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :17–24.
Host-based Intrusion Detection Systems HIDS are often based on anomaly detection. Several studies deal with anomaly detection by analyzing the system-call traces and get good detection rates but also a high rate off alse positives. In this paper, we propose a new anomaly detection approach applied on the system-call traces. The normal behavior learning is done using a Sequence to sequence model based on a Variational Encoder-Decoder (VED) architecture that integrates Recurrent Neural Networks (RNN) cells. We exploit the semantics behind the invoking order of system-calls that are then seen as sentences. A preprocessing phase is added to structure and optimize the model input-data representation. After the learning step, a one-class classification is run to categorize the sequences as normal or abnormal. The architecture may be used for predicting abnormal behaviors. The tests are achieved on the ADFA-LD dataset.
2021-03-30
Cheng, S.-T., Zhu, C.-Y., Hsu, C.-W., Shih, J.-S..  2020.  The Anomaly Detection Mechanism Using Extreme Learning Machine for Service Function Chaining. 2020 International Computer Symposium (ICS). :310—315.

The age of the wireless network already advances to the fifth generation (5G) era. With software-defined networking (SDN) and network function virtualization (NFV), various scenarios can be implemented in the 5G network. Cloud computing, for example, is one of the important application scenarios for implementing SDN/NFV solutions. The emerging container technologies, such as Docker, can provide more agile service provisioning than virtual machines can do in cloud environments. It is a trend that virtual network functions (VNFs) tend to be deployed in the form of containers. The services provided by clouds can be formed by service function chaining (SFC) consisting of containerized VNFs. Nevertheless, the challenges and limitation regarding SFCs are reported in the literature. Various network services are bound to rely heavily on these novel technologies, however, the development of related technologies often emphasizes functions and ignores security issues. One noticeable issue is the SFC integrity. In brief, SFC integrity concerns whether the paths that traffic flows really pass by and the ones of service chains that are predefined are consistent. In order to examine SFC integrity in the cloud-native environment of 5G network, we propose a framework that can be integrated with NFV management and orchestration (MANO) in this work. The core of this framework is the anomaly detection mechanism for SFC integrity. The learning algorithm of our mechanism is based on extreme learning machine (ELM). The proposed mechanism is evaluated by its performance such as the accuracy of our ELM model. This paper concludes with discussions and future research work.

Elnour, M., Meskin, N., Khan, K. M..  2020.  Hybrid Attack Detection Framework for Industrial Control Systems using 1D-Convolutional Neural Network and Isolation Forest. 2020 IEEE Conference on Control Technology and Applications (CCTA). :877—884.

Industrial control systems (ICSs) are used in various infrastructures and industrial plants for realizing their control operation and ensuring their safety. Concerns about the cybersecurity of industrial control systems have raised due to the increased number of cyber-attack incidents on critical infrastructures in the light of the advancement in the cyber activity of ICSs. Nevertheless, the operation of the industrial control systems is bind to vital aspects in life, which are safety, economy, and security. This paper presents a semi-supervised, hybrid attack detection approach for industrial control systems by combining Isolation Forest and Convolutional Neural Network (CNN) models. The proposed framework is developed using the normal operational data, and it is composed of a feature extraction model implemented using a One-Dimensional Convolutional Neural Network (1D-CNN) and an isolation forest model for the detection. The two models are trained independently such that the feature extraction model aims to extract useful features from the continuous-time signals that are then used along with the binary actuator signals to train the isolation forest-based detection model. The proposed approach is applied to a down-scaled industrial control system, which is a water treatment plant known as the Secure Water Treatment (SWaT) testbed. The performance of the proposed method is compared with the other works using the same testbed, and it shows an improvement in terms of the detection capability.

Tai, J., Alsmadi, I., Zhang, Y., Qiao, F..  2020.  Machine Learning Methods for Anomaly Detection in Industrial Control Systems. 2020 IEEE International Conference on Big Data (Big Data). :2333—2339.

This paper examines multiple machine learning models to find the model that best indicates anomalous activity in an industrial control system that is under a software-based attack. The researched machine learning models are Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Recurrent Neural Network classifiers built-in Python and tested against the HIL-based Augmented ICS dataset. Although the results showed that Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Long Short-Term Memory classification models have great potential for anomaly detection in industrial control systems, we found that Random Forest with tuned hyperparameters slightly outperformed the other models.

Li, Y., Ji, X., Li, C., Xu, X., Yan, W., Yan, X., Chen, Y., Xu, W..  2020.  Cross-domain Anomaly Detection for Power Industrial Control System. 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC). :383—386.

In recent years, artificial intelligence has been widely used in the field of network security, which has significantly improved the effect of network security analysis and detection. However, because the power industrial control system is faced with the problem of shortage of attack data, the direct deployment of the network intrusion detection system based on artificial intelligence is faced with the problems of lack of data, low precision, and high false alarm rate. To solve this problem, we propose an anomaly traffic detection method based on cross-domain knowledge transferring. By using the TrAdaBoost algorithm, we achieve a lower error rate than using LSTM alone.

Kuchar, K., Fujdiak, R., Blazek, P., Martinasek, Z., Holasova, E..  2020.  Simplified Method for Fast and Efficient Incident Detection in Industrial Networks. 2020 4th Cyber Security in Networking Conference (CSNet). :1—3.

This article is focused on industrial networks and their security. An industrial network typically works with older devices that do not provide security at the level of today's requirements. Even protocols often do not support security at a sufficient level. It is necessary to deal with these security issues due to digitization. It is therefore required to provide other techniques that will help with security. For this reason, it is possible to deploy additional elements that will provide additional security and ensure the monitoring of the network, such as the Intrusion Detection System. These systems recognize identified signatures and anomalies. Methods of detecting security incidents by detecting anomalies in network traffic are described. The proposed methods are focused on detecting DoS attacks in the industrial Modbus protocol and operations performed outside the standard interval in the Distributed Network Protocol 3. The functionality of the performed methods is tested in the IDS system Zeek.

Lin, T.-H., Jiang, J.-R..  2020.  Anomaly Detection with Autoencoder and Random Forest. 2020 International Computer Symposium (ICS). :96—99.

This paper proposes AERFAD, an anomaly detection method based on the autoencoder and the random forest, for solving the credit card fraud detection problem. The proposed AERFAD first utilizes the autoencoder to reduce the dimensionality of data and then uses the random forest to classify data as anomalous or normal. Large numbers of credit card transaction data of European cardholders are applied to AEFRAD to detect possible frauds for the sake of performance evaluation. When compared with related methods, AERFAD has relatively excellent performance in terms of the accuracy, true positive rate, true negative rate, and Matthews correlation coefficient.

Zhang, R., Cao, Z., Wu, K..  2020.  Tracing and detection of ICS Anomalies Based on Causality Mutations. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). :511—517.

The algorithm of causal anomaly detection in industrial control physics is proposed to determine the normal cloud line of industrial control system so as to accurately detect the anomaly. In this paper, The causal modeling algorithm combining Maximum Information Coefficient and Transfer Entropy was used to construct the causal network among nodes in the system. Then, the abnormal nodes and the propagation path of the anomaly are deduced from the structural changes of the causal network before and after the attack. Finally, an anomaly detection algorithm based on hybrid differential cumulative is used to identify the specific anomaly data in the anomaly node. The stability of causality mining algorithm and the validity of locating causality anomalies are verified by using the data of classical chemical process. Experimental results show that the anomaly detection algorithm is better than the comparison algorithm in accuracy, false negative rate and recall rate, and the anomaly location strategy makes the anomaly source traceable.

2021-03-29
Ateş, Ç, Özdel, S., Anarim, E..  2020.  DDoS Detection Algorithm Based on Fuzzy Logic. 2020 28th Signal Processing and Communications Applications Conference (SIU). :1—4.

While internet technologies are developing day by day, threats against them are increasing at the same speed. One of the most serious and common types of attacks is Distributed Denial of Service (DDoS) attacks. The DDoS intrusion detection approach proposed in this study is based on fuzzy logic and entropy. The network is modeled as a graph and graphics-based features are used to distinguish attack traffic from non-attack traffic. Fuzzy clustering is applied based on these properties to indicate the tendency of IP addresses or port numbers to be in the same cluster. Based on this uncertainty, attack and non-attack traffic were modeled. The detection stage uses the fuzzy relevance function. This algorithm was tested on real data collected from Boğaziçi University network.

Kummerow, A., Monsalve, C., Rösch, D., Schäfer, K., Nicolai, S..  2020.  Cyber-physical data stream assessment incorporating Digital Twins in future power systems. 2020 International Conference on Smart Energy Systems and Technologies (SEST). :1—6.

Reliable and secure grid operations become more and more challenging in context of increasing IT/OT convergence and decreasing dynamic margins in today's power systems. To ensure the correct operation of monitoring and control functions in control centres, an intelligent assessment of the different information sources is necessary to provide a robust data source in case of critical physical events as well as cyber-attacks. Within this paper, a holistic data stream assessment methodology is proposed using an expert knowledge based cyber-physical situational awareness for different steady and transient system states. This approach goes beyond existing techniques by combining high-resolution PMU data with SCADA information as well as Digital Twin and AI based anomaly detection functionalities.

Ouiazzane, S., Addou, M., Barramou, F..  2020.  Toward a Network Intrusion Detection System for Geographic Data. 2020 IEEE International conference of Moroccan Geomatics (Morgeo). :1—7.

The objective of this paper is to propose a model of a distributed intrusion detection system based on the multi-agent paradigm and the distributed file system (HDFS). Multi-agent systems (MAS) are very suitable to intrusion detection systems as they can address the issue of geographic data security in terms of autonomy, distribution and performance. The proposed system is based on a set of autonomous agents that cooperate and collaborate with each other to effectively detect intrusions and suspicious activities that may impact geographic information systems. Our system allows the detection of known and unknown computer attacks without any human intervention (Security Experts) unlike traditional intrusion detection systems that rely on knowledge bases as a mechanism to detect known attacks. The proposed model allows a real time detection of known and unknown attacks within large networks hosting geographic data.

Olaimat, M. Al, Lee, D., Kim, Y., Kim, J., Kim, J..  2020.  A Learning-based Data Augmentation for Network Anomaly Detection. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1–10.
While machine learning technologies have been remarkably advanced over the past several years, one of the fundamental requirements for the success of learning-based approaches would be the availability of high-quality data that thoroughly represent individual classes in a problem space. Unfortunately, it is not uncommon to observe a significant degree of class imbalance with only a few instances for minority classes in many datasets, including network traffic traces highly skewed toward a large number of normal connections while very small in quantity for attack instances. A well-known approach to addressing the class imbalance problem is data augmentation that generates synthetic instances belonging to minority classes. However, traditional statistical techniques may be limited since the extended data through statistical sampling should have the same density as original data instances with a minor degree of variation. This paper takes a learning-based approach to data augmentation to enable effective network anomaly detection. One of the critical challenges for the learning-based approach is the mode collapse problem resulting in a limited diversity of samples, which was also observed from our preliminary experimental result. To this end, we present a novel "Divide-Augment-Combine" (DAC) strategy, which groups the instances based on their characteristics and augments data on a group basis to represent a subset independently using a generative adversarial model. Our experimental results conducted with two recently collected public network datasets (UNSW-NB15 and IDS-2017) show that the proposed technique enhances performances up to 21.5% for identifying network anomalies.
Alabugin, S. K., Sokolov, A. N..  2020.  Applying of Generative Adversarial Networks for Anomaly Detection in Industrial Control Systems. 2020 Global Smart Industry Conference (GloSIC). :199–203.

Modern industrial control systems (ICS) act as victims of cyber attacks more often in last years. These cyber attacks often can not be detected by classical information security methods. Moreover, the consequences of cyber attack's impact can be catastrophic. Since cyber attacks leads to appearance of anomalies in the ICS and technological equipment controlled by it, the task of intrusion detection for ICS can be reformulated as the task of industrial process anomaly detection. This paper considers the applicability of generative adversarial networks (GANs) in the field of industrial processes anomaly detection. Existing approaches for GANs usage in the field of information security (such as anomaly detection in network traffic) were described. It is proposed to use the BiGAN architecture in order to detect anomalies in the industrial processes. The proposed approach has been tested on Secure Water Treatment Dataset (SWaT). The obtained results indicate the prospects of using the examined method in practice.

2021-03-15
Toma, A., Krayani, A., Marcenaro, L., Gao, Y., Regazzoni, C. S..  2020.  Deep Learning for Spectrum Anomaly Detection in Cognitive mmWave Radios. 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications. :1–7.
Millimeter Wave (mmWave) band can be a solution to serve the vast number of Internet of Things (IoT) and Vehicle to Everything (V2X) devices. In this context, Cognitive Radio (CR) is capable of managing the mmWave spectrum sharing efficiently. However, Cognitive mmWave Radios are vulnerable to malicious users due to the complex dynamic radio environment and the shared access medium. This indicates the necessity to implement techniques able to detect precisely any anomalous behaviour in the spectrum to build secure and efficient radios. In this work, we propose a comparison framework between deep generative models: Conditional Generative Adversarial Network (C-GAN), Auxiliary Classifier Generative Adversarial Network (AC-GAN), and Variational Auto Encoder (VAE) used to detect anomalies inside the dynamic radio spectrum. For the sake of the evaluation, a real mmWave dataset is used, and results show that all of the models achieve high probability in detecting spectrum anomalies. Especially, AC-GAN that outperforms C-GAN and VAE in terms of accuracy and probability of detection.
2021-03-09
Liao, Q., Gu, Y., Liao, J., Li, W..  2020.  Abnormal transaction detection of Bitcoin network based on feature fusion. 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 9:542—549.

Anomaly detection is one of the research hotspots in Bitcoin transaction data analysis. In view of the existing research that only considers the transaction as an isolated node when extracting features, but has not yet used the network structure to dig deep into the node information, a bitcoin abnormal transaction detection method that combines the node’s own features and the neighborhood features is proposed. Based on the formation mechanism of the interactive relationship in the transaction network, first of all, according to a certain path selection probability, the features of the neighbohood nodes are extracted by way of random walk, and then the node’s own features and the neighboring features are fused to use the network structure to mine potential node information. Finally, an unsupervised detection algorithm is used to rank the transaction points on the constructed feature set to find abnormal transactions. Experimental results show that, compared with the existing feature extraction methods, feature fusion improves the ability to detect abnormal transactions.

Hossain, M. D., Ochiai, H., Doudou, F., Kadobayashi, Y..  2020.  SSH and FTP brute-force Attacks Detection in Computer Networks: LSTM and Machine Learning Approaches. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :491—497.

Network traffic anomaly detection is of critical importance in cybersecurity due to the massive and rapid growth of sophisticated computer network attacks. Indeed, the more new Internet-related technologies are created, the more elaborate the attacks become. Among all the contemporary high-level attacks, dictionary-based brute-force attacks (BFA) present one of the most unsurmountable challenges. We need to develop effective methods to detect and mitigate such brute-force attacks in realtime. In this paper, we investigate SSH and FTP brute-force attack detection by using the Long Short-Term Memory (LSTM) deep learning approach. Additionally, we made use of machine learning (ML) classifiers: J48, naive Bayes (NB), decision table (DT), random forest (RF) and k-nearest-neighbor (k-NN), for additional detection purposes. We used the well-known labelled dataset CICIDS2017. We evaluated the effectiveness of the LSTM and ML algorithms, and compared their performance. Our results show that the LSTM model outperforms the ML algorithms, with an accuracy of 99.88%.

Hegde, M., Kepnang, G., Mazroei, M. Al, Chavis, J. S., Watkins, L..  2020.  Identification of Botnet Activity in IoT Network Traffic Using Machine Learning. 2020 International Conference on Intelligent Data Science Technologies and Applications (IDSTA). :21—27.

Today our world benefits from Internet of Things (IoT) technology; however, new security problems arise when these IoT devices are introduced into our homes. Because many of these IoT devices have access to the Internet and they have little to no security, they make our smart homes highly vulnerable to compromise. Some of the threats include IoT botnets and generic confidentiality, integrity, and availability (CIA) attacks. Our research explores botnet detection by experimenting with supervised machine learning and deep-learning classifiers. Further, our approach assesses classifier performance on unbalanced datasets that contain benign data, mixed in with small amounts of malicious data. We demonstrate that the classifiers can separate malicious activity from benign activity within a small IoT network dataset. The classifiers can also separate malicious activity from benign activity in increasingly larger datasets. Our experiments have demonstrated incremental improvement in results for (1) accuracy, (2) probability of detection, and (3) probability of false alarm. The best performance results include 99.9% accuracy, 99.8% probability of detection, and 0% probability of false alarm. This paper also demonstrates how the performance of these classifiers increases, as IoT training datasets become larger and larger.

Mashhadi, M. J., Hemmati, H..  2020.  Hybrid Deep Neural Networks to Infer State Models of Black-Box Systems. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :299–311.
Inferring behavior model of a running software system is quite useful for several automated software engineering tasks, such as program comprehension, anomaly detection, and testing. Most existing dynamic model inference techniques are white-box, i.e., they require source code to be instrumented to get run-time traces. However, in many systems, instrumenting the entire source code is not possible (e.g., when using black-box third-party libraries) or might be very costly. Unfortunately, most black-box techniques that detect states over time are either univariate, or make assumptions on the data distribution, or have limited power for learning over a long period of past behavior. To overcome the above issues, in this paper, we propose a hybrid deep neural network that accepts as input a set of time series, one per input/output signal of the system, and applies a set of convolutional and recurrent layers to learn the non-linear correlations between signals and the patterns, over time. We have applied our approach on a real UAV auto-pilot solution from our industry partner with half a million lines of C code. We ran 888 random recent system-level test cases and inferred states, over time. Our comparison with several traditional time series change point detection techniques showed that our approach improves their performance by up to 102%, in terms of finding state change points, measured by F1 score. We also showed that our state classification algorithm provides on average 90.45% F1 score, which improves traditional classification algorithms by up to 17%.
2021-03-04
Hashemi, M. J., Keller, E..  2020.  Enhancing Robustness Against Adversarial Examples in Network Intrusion Detection Systems. 2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :37—43.

The increase of cyber attacks in both the numbers and varieties in recent years demands to build a more sophisticated network intrusion detection system (NIDS). These NIDS perform better when they can monitor all the traffic traversing through the network like when being deployed on a Software-Defined Network (SDN). Because of the inability to detect zero-day attacks, signature-based NIDS which were traditionally used for detecting malicious traffic are beginning to get replaced by anomaly-based NIDS built on neural networks. However, recently it has been shown that such NIDS have their own drawback namely being vulnerable to the adversarial example attack. Moreover, they were mostly evaluated on the old datasets which don't represent the variety of attacks network systems might face these days. In this paper, we present Reconstruction from Partial Observation (RePO) as a new mechanism to build an NIDS with the help of denoising autoencoders capable of detecting different types of network attacks in a low false alert setting with an enhanced robustness against adversarial example attack. Our evaluation conducted on a dataset with a variety of network attacks shows denoising autoencoders can improve detection of malicious traffic by up to 29% in a normal setting and by up to 45% in an adversarial setting compared to other recently proposed anomaly detectors.

Sejr, J. H., Zimek, A., Schneider-Kamp, P..  2020.  Explainable Detection of Zero Day Web Attacks. 2020 3rd International Conference on Data Intelligence and Security (ICDIS). :71—78.

The detection of malicious HTTP(S) requests is a pressing concern in cyber security, in particular given the proliferation of HTTP-based (micro-)service architectures. In addition to rule-based systems for known attacks, anomaly detection has been shown to be a promising approach for unknown (zero-day) attacks. This article extends existing work by integrating outlier explanations for individual requests into an end-to-end pipeline. These end-to-end explanations reflect the internal working of the pipeline. Empirically, we show that found explanations coincide with manually labelled explanations for identified outliers, allowing security professionals to quickly identify and understand malicious requests.

Gorbenko, A., Popov, V..  2020.  Abnormal Behavioral Pattern Detection in Closed-Loop Robotic Systems for Zero-Day Deceptive Threats. 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1—6.

In recent years, attacks against cyber-physical systems have become increasingly frequent and widespread. The inventiveness of such attacks increases significantly. In particular, zero-day attacks are widely used. The rapid development of the industrial Internet of things, the expansion of the application areas of service robots, the advent of the Internet of vehicles and the Internet of military things have led to a significant increase of attention to deceptive attacks. Especially great threat is posed by deceptive attacks that do not use hiding malicious components. Such attacks can naturally be used against robotic systems. In this paper, we consider an approach to the development of an intrusion detection system for closed-loop robotic systems. The system is based on an abnormal behavioral pattern detection technique. The system can be used for detection of zero-day deceptive attacks. We provide an experimental comparison of our approach and other behavior-based intrusion detection systems.