Visible to the public Biblio

Filters: Keyword is Sandboxing  [Clear All Filters]
2021-05-05
Chalkiadakis, Nikolaos, Deyannis, Dimitris, Karnikis, Dimitris, Vasiliadis, Giorgos, Ioannidis, Sotiris.  2020.  The Million Dollar Handshake: Secure and Attested Communications in the Cloud. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :63—70.

The number of applications and services that are hosted on cloud platforms is constantly increasing. Nowadays, more and more applications are hosted as services on cloud platforms, co-existing with other services in a mutually untrusted environment. Facilities such as virtual machines, containers and encrypted communication channels aim to offer isolation between the various applications and protect sensitive user data. However, such techniques are not always able to provide a secure execution environment for sensitive applications nor they offer guarantees that data are not monitored by an honest but curious provider once they reach the cloud infrastructure. The recent advancements of trusted execution environments within commodity processors, such as Intel SGX, provide a secure reverse sandbox, where code and data are isolated even from the underlying operating system. Moreover, Intel SGX provides a remote attestation mechanism, allowing the communicating parties to verify their identity as well as prove that code is executed on hardware-assisted software enclaves. Many approaches try to ensure code and data integrity, as well as enforce channel encryption schemes such as TLS, however, these techniques are not enough to achieve complete isolation and secure communications without hardware assistance or are not efficient in terms of performance. In this work, we design and implement a practical attestation system that allows the service provider to offer a seamless attestation service between the hosted applications and the end clients. Furthermore, we implement a novel caching system that is capable to eliminate the latencies introduced by the remote attestation process. Our approach allows the parties to attest one another before each communication attempt, with improved performance when compared to a standard TLS handshake.

Coulter, Rory, Zhang, Jun, Pan, Lei, Xiang, Yang.  2020.  Unmasking Windows Advanced Persistent Threat Execution. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :268—276.

The advanced persistent threat (APT) landscape has been studied without quantifiable data, for which indicators of compromise (IoC) may be uniformly analyzed, replicated, or used to support security mechanisms. This work culminates extensive academic and industry APT analysis, not as an incremental step in existing approaches to APT detection, but as a new benchmark of APT related opportunity. We collect 15,259 APT IoC hashes, retrieving subsequent sandbox execution logs across 41 different file types. This work forms an initial focus on Windows-based threat detection. We present a novel Windows APT executable (APT-EXE) dataset, made available to the research community. Manual and statistical analysis of the APT-EXE dataset is conducted, along with supporting feature analysis. We draw upon repeat and common APT paths access, file types, and operations within the APT-EXE dataset to generalize APT execution footprints. A baseline case analysis successfully identifies a majority of 117 of 152 live APT samples from campaigns across 2018 and 2019.

Poudyal, Subash, Dasgupta, Dipankar.  2020.  AI-Powered Ransomware Detection Framework. 2020 IEEE Symposium Series on Computational Intelligence (SSCI). :1154—1161.

Ransomware attacks are taking advantage of the ongoing pandemics and attacking the vulnerable systems in business, health sector, education, insurance, bank, and government sectors. Various approaches have been proposed to combat ransomware, but the dynamic nature of malware writers often bypasses the security checkpoints. There are commercial tools available in the market for ransomware analysis and detection, but their performance is questionable. This paper aims at proposing an AI-based ransomware detection framework and designing a detection tool (AIRaD) using a combination of both static and dynamic malware analysis techniques. Dynamic binary instrumentation is done using PIN tool, function call trace is analyzed leveraging Cuckoo sandbox and Ghidra. Features extracted at DLL, function call, and assembly level are processed with NLP, association rule mining techniques and fed to different machine learning classifiers. Support vector machine and Adaboost with J48 algorithms achieved the highest accuracy of 99.54% with 0.005 false-positive rates for a multi-level combined term frequency approach.

Chi, Po-Wen, Wang, Ming-Hung, Zheng, Yu.  2020.  SandboxNet: An Online Malicious SDN Application Detection Framework for SDN Networking. 2020 International Computer Symposium (ICS). :397—402.

Software Defined Networking (SDN) is a concept that decouples the control plane and the user plane. So the network administrator can easily control the network behavior through its own programs. However, the administrator may unconsciously apply some malicious programs on SDN controllers so that the whole network may be under the attacker’s control. In this paper, we discuss the malicious software issue on SDN networks. We use the idea of sandbox to propose a sandbox network called SanboxNet. We emulate a virtual isolated network environment to verify the SDN application functions. With continuous monitoring, we can locate the suspicious SDN applications. We also consider the sandbox-evading issue in our framework. The emulated networks and the real world networks will be indistinguishable to the SDN controller.

Singh, Sukhpreet, Jagdev, Gagandeep.  2020.  Execution of Big Data Analytics in Automotive Industry using Hortonworks Sandbox. 2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN). :158—163.

The market landscape has undergone dramatic change because of globalization, shifting marketing conditions, cost pressure, increased competition, and volatility. Transforming the operation of businesses has been possible because of the astonishing speed at which technology has witnessed the change. The automotive industry is on the edge of a revolution. The increased customer expectations, changing ownership, self-driving vehicles and much more have led to the transformation of automobiles, applications, and services from artificial intelligence, sensors, RFID to big data analysis. Large automobiles industries have been emphasizing the collection of data to gain insight into customer's expectations, preferences, and budgets alongside competitor's policies. Statistical methods can be applied to historical data, which has been gathered from various authentic sources and can be used to identify the impact of fixed and variable marketing investments and support automakers to come up with a more effective, precise, and efficient approach to target customers. Proper analysis of supply chain data can disclose the weak links in the chain enabling to adopt timely countermeasures to minimize the adverse effects. In order to fully gain benefit from analytics, the collaboration of a detailed set of capabilities responsible for intersecting and integrating with multiple functions and teams across the business is required. The effective role played by big data analysis in the automobile industry has also been expanded in the research paper. The research paper discusses the scope and challenges of big data. The paper also elaborates on the working technology behind the concept of big data. The paper illustrates the working of MapReduce technology that executes in the back end and is responsible for performing data mining.

Cano M, Jeimy J..  2020.  Sandbox: Revindicate failure as the foundation of learning. 2020 IEEE World Conference on Engineering Education (EDUNINE). :1—6.

In an increasingly asymmetric context of both instability and permanent innovation, organizations demand new capacities and learning patterns. In this sense, supervisors have adopted the metaphor of the "sandbox" as a strategy that allows their regulated parties to experiment and test new proposals in order to study them and adjust to the established compliance frameworks. Therefore, the concept of the "sandbox" is of educational interest as a way to revindicate failure as a right in the learning process, allowing students to think, experiment, ask questions and propose ideas outside the known theories, and thus overcome the mechanistic formation rooted in many of the higher education institutions. Consequently, this article proposes the application of this concept for educational institutions as a way of resignifying what students have learned.

Kumar, Rahul, Sethi, Kamalakanta, Prajapati, Nishant, Rout, Rashmi Ranjan, Bera, Padmalochan.  2020.  Machine Learning based Malware Detection in Cloud Environment using Clustering Approach. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.

Enforcing security and resilience in a cloud platform is an essential but challenging problem due to the presence of a large number of heterogeneous applications running on shared resources. A security analysis system that can detect threats or malware must exist inside the cloud infrastructure. Much research has been done on machine learning-driven malware analysis, but it is limited in computational complexity and detection accuracy. To overcome these drawbacks, we proposed a new malware detection system based on the concept of clustering and trend micro locality sensitive hashing (TLSH). We used Cuckoo sandbox, which provides dynamic analysis reports of files by executing them in an isolated environment. We used a novel feature extraction algorithm to extract essential features from the malware reports obtained from the Cuckoo sandbox. Further, the most important features are selected using principal component analysis (PCA), random forest, and Chi-square feature selection methods. Subsequently, the experimental results are obtained for clustering and non-clustering approaches on three classifiers, including Decision Tree, Random Forest, and Logistic Regression. The model performance shows better classification accuracy and false positive rate (FPR) as compared to the state-of-the-art works and non-clustering approach at significantly lesser computation cost.

Kishore, Pushkar, Barisal, Swadhin Kumar, Prasad Mohapatra, Durga.  2020.  JavaScript malware behaviour analysis and detection using sandbox assisted ensemble model. 2020 IEEE REGION 10 CONFERENCE (TENCON). :864—869.

Whenever any internet user visits a website, a scripting language runs in the background known as JavaScript. The embedding of malicious activities within the script poses a great threat to the cyberworld. Attackers take advantage of the dynamic nature of the JavaScript and embed malicious code within the website to download malware and damage the host. JavaScript developers obfuscate the script to keep it shielded from getting detected by the malware detectors. In this paper, we propose a novel technique for analysing and detecting JavaScript using sandbox assisted ensemble model. We extract the payload using malware-jail sandbox to get the real script. Upon getting the extracted script, we analyse it to define the features that are needed for creating the dataset. We compute Pearson's r between every feature for feature extraction. An ensemble model consisting of Sequential Minimal Optimization (SMO), Voted Perceptron and AdaBoost algorithm is used with voting technique to detect malicious JavaScript. Experimental results show that our proposed model can detect obfuscated and de-obfuscated malicious JavaScript with an accuracy of 99.6% and 0.03s detection time. Our model performs better than other state-of-the-art models in terms of accuracy and least training and detection time.

Đuranec, A., Gruičić, S., Žagar, M..  2020.  Forensic analysis of Windows 10 Sandbox. 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). :1224—1229.

With each Windows operating system Microsoft introduces new features to its users. Newly added features present a challenge to digital forensics examiners as they are not analyzed or tested enough. One of the latest features, introduced in Windows 10 version 1909 is Windows Sandbox; a lightweight, temporary, environment for running untrusted applications. Because of the temporary nature of the Sandbox and insufficient documentation, digital forensic examiners are facing new challenges when examining this newly added feature which can be used to hide different illegal activities. Throughout this paper, the focus will be on analyzing different Windows artifacts and event logs, with various tools, left behind as a result of the user interaction with the Sandbox feature on a clear virtual environment. Additionally, the setup of testing environment will be explained, the results of testing and interpretation of the findings will be presented, as well as open-source tools used for the analysis.

Rizvi, Syed R, Lubawy, Andrew, Rattz, John, Cherry, Andrew, Killough, Brian, Gowda, Sanjay.  2020.  A Novel Architecture of Jupyterhub on Amazon Elastic Kubernetes Service for Open Data Cube Sandbox. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. :3387—3390.

The Open Data Cube (ODC) initiative, with support from the Committee on Earth Observation Satellites (CEOS) System Engineering Office (SEO) has developed a state-of-the-art suite of software tools and products to facilitate the analysis of Earth Observation data. This paper presents a short summary of our novel architecture approach in a project related to the Open Data Cube (ODC) community that provides users with their own ODC sandbox environment. Users can have a sandbox environment all to themselves for the purpose of running Jupyter notebooks that leverage the ODC. This novel architecture layout will remove the necessity of hosting multiple users on a single Jupyter notebook server and provides better management tooling for handling resource usage. In this new layout each user will have their own credentials which will give them access to a personal Jupyter notebook server with access to a fully deployed ODC environment enabling exploration of solutions to problems that can be supported by Earth observation data.

2020-09-21
Osman, Amr, Bruckner, Pascal, Salah, Hani, Fitzek, Frank H. P., Strufe, Thorsten, Fischer, Mathias.  2019.  Sandnet: Towards High Quality of Deception in Container-Based Microservice Architectures. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–7.
Responding to network security incidents requires interference with ongoing attacks to restore the security of services running on production systems. This approach prevents damage, but drastically impedes the collection of threat intelligence and the analysis of vulnerabilities, exploits, and attack strategies. We propose the live confinement of suspicious microservices into a sandbox network that allows to monitor and analyze ongoing attacks under quarantine and that retains an image of the vulnerable and open production network. A successful sandboxing requires that it happens completely transparent to and cannot be detected by an attacker. Therefore, we introduce a novel metric to measure the Quality of Deception (QoD) and use it to evaluate three proposed network deception mechanisms. Our evaluation results indicate that in our evaluation scenario in best case, an optimal QoD is achieved. In worst case, only a small downtime of approx. 3s per microservice (MS) occurs and thus a momentary drop in QoD to 70.26% before it converges back to optimum as the quarantined services are restored.
2020-03-27
Al-Rushdan, Huthifh, Shurman, Mohammad, Alnabelsi, Sharhabeel H., Althebyan, Qutaibah.  2019.  Zero-Day Attack Detection and Prevention in Software-Defined Networks. 2019 International Arab Conference on Information Technology (ACIT). :278–282.
The zero-day attack in networks exploits an undiscovered vulnerability, in order to affect/damage networks or programs. The term “zero-day” refers to the number of days available to the software or the hardware vendor to issue a patch for this new vulnerability. Currently, the best-known defense mechanism against the zero-day attacks focuses on detection and response, as a prevention effort, which typically fails against unknown or new vulnerabilities. To the best of our knowledge, this attack has not been widely investigated for Software-Defined Networks (SDNs). Therefore, in this work we are motivated to develop anew zero-day attack detection and prevention mechanism, which is designed and implemented for SDN using a modified sandbox tool, named Cuckoo. Our experiments results, under UNIX system, show that our proposed design successfully stops zero-day malwares by isolating the infected client, and thus, prevents these malwares from infesting other clients.
Walker, Aaron, Amjad, Muhammad Faisal, Sengupta, Shamik.  2019.  Cuckoo’s Malware Threat Scoring and Classification: Friend or Foe? 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0678–0684.
Malware threat classification involves understanding the behavior of the malicious software and how it affects a victim host system. Classifying threats allows for measured response appropriate to the risk involved. Malware incident response depends on many automated tools for the classification of threat to help identify the appropriate reaction to a threat alert. Cuckoo Sandbox is one such tool which can be used for automated analysis of malware and one method of threat classification provided is a threat score. A security analyst might submit a suspicious file to Cuckoo for analysis to determine whether or not the file contains malware or performs potentially malicious behavior on a system. Cuckoo is capable of producing a report of this behavior and ranks the severity of the observed actions as a score from one to ten, with ten being the most severe. As such, a malware sample classified as an 8 would likely take priority over a sample classified as a 3. Unfortunately, this scoring classification can be misleading due to the underlying methodology of severity classification. In this paper we demonstrate why the current methodology of threat scoring is flawed and therefore we believe it can be improved with greater emphasis on analyzing the behavior of the malware. This allows for a threat classification rating which scales with the risk involved in the malware behavior.
Tamura, Keiichi, Omagari, Akitada, Hashida, Shuichi.  2019.  Novel Defense Method against Audio Adversarial Example for Speech-to-Text Transcription Neural Networks. 2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA). :115–120.
With the developments in deep learning, the security of neural networks against vulnerabilities has become one of the most urgent research topics in deep learning. There are many types of security countermeasures. Adversarial examples and their defense methods, in particular, have been well-studied in recent years. An adversarial example is designed to make neural networks misclassify or produce inaccurate output. Audio adversarial examples are a type of adversarial example where the main target of attack is a speech-to-text transcription neural network. In this study, we propose a new defense method against audio adversarial examples for the speech-to-text transcription neural networks. It is difficult to determine whether an input waveform data representing the sound of voice is an audio adversarial example. Therefore, the main framework of the proposed defense method is based on a sandbox approach. To evaluate the proposed defense method, we used actual audio adversarial examples that were created on Deep Speech, which is a speech-to-text transcription neural network. We confirmed that our defense method can identify audio adversarial examples to protect speech-to-text systems.
Salehi, Majid, Hughes, Danny, Crispo, Bruno.  2019.  MicroGuard: Securing Bare-Metal Microcontrollers against Code-Reuse Attacks. 2019 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.
Bare-metal microcontrollers are a family of Internet of Things (IoT) devices which are increasingly deployed in critical industrial environments. Similar to other IoT devices, bare-metal microcontrollers are vulnerable to memory corruption and code-reuse attacks. We propose MicroGuard, a novel mitigation method based on component-level sandboxing and automated code randomization to securely encapsulate application components in isolated environments. We implemented MicroGuard and evaluated its efficacy and efficiency with a real-world benchmark against different types of attacks. As our evaluation shows, MicroGuard provides better security than ACES, current state-of-the-art protection framework for bare-metal microcontrollers, with a comparable performance overhead.
Cabrini, Fábio H., de Barros Castro Filho, Albérico, Filho, Filippo V., Kofuji, Sergio T., Moura, Angelo Rafael Lunardelli Pucci.  2019.  Helix SandBox: An Open Platform to Fast Prototype Smart Environments Applications. 2019 IEEE 1st Sustainable Cities Latin America Conference (SCLA). :1–6.
This paper presents the Helix SandBox, an open platform for quick prototyping of smart environment applications. Its architecture was designed to be a lightweight solution that aimed to simplify the instance integration and setup of the main Generic Enablers provided in the FIWARE architecture. As a Powered by FIWARE platform, the SandBox operates with the NGSI standard for interoperability between systems. The platform offers a container-based multicloud architecture capable of running in public, private and bare metal clouds or even in the leading hypervisors available. This paper also proposes a multi-layered architecture capable of integrates the cloud, fog, edge and IoT layers through the federation concept. Lastly, we present two Smart Cities applications conducted in the form of Proof of Concept (PoC) that use the Helix SandBox platform as back-end.
Hassan, Galal, Rashwan, Abdulmonem M., Hassanein, Hossam S..  2019.  SandBoxer: A Self-Contained Sensor Architecture for Sandboxing the Industrial Internet of Things. 2019 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
The Industrial Internet-of-Things (IIoT) has gained significant interest from both the research and industry communities. Such interest came with a vision towards enabling automation and intelligence for futuristic versions of our day to day devices. However, such a vision demands the need for accelerated research and development of IIoT systems, in which sensor integration, due to their diversity, impose a significant roadblock. Such roadblocks are embodied in both the cost and time to develop an IIoT platform, imposing limits on the innovation of sensor manufacturers, as a result of the demand to maintain interface compatibility for seamless integration and low development costs. In this paper, we propose an IIoT system architecture (SandBoxer) tailored for sensor integration, that utilizes a collaborative set of efforts from various technologies and research fields. The paper introduces the concept of ”development-sandboxing” as a viable choice towards building the foundation for enabling true-plug-and-play IIoT. We start by outlining the key characteristics desired to create an architecture that catalyzes IIoT research and development. We then present our vision of the architecture through the use of a sensor-hosted EEPROM and scripting to ”sandbox” the sensors, which in turn accelerates sensor integration for developers and creates a broader innovation path for sensor manufacturers. We also discuss multiple design alternative, challenges, and use cases in both the research and industry.
Liu, Yingying, Wang, Yiwei.  2019.  A Robust Malware Detection System Using Deep Learning on API Calls. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1456–1460.
With the development of technology, the massive malware become the major challenge to current computer security. In our work, we implemented a malware detection system using deep learning on API calls. By means of cuckoo sandbox, we extracted the API calls sequence of malicious programs. Through filtering and ordering the redundant API calls, we extracted the valid API sequences. Compared with GRU, BGRU, LSTM and SimpleRNN, we evaluated the BLSTM on the massive datasets including 21,378 samples. The experimental results demonstrate that BLSTM has the best performance for malware detection, reaching the accuracy of 97.85%.
Sgambelluri, A., Dugeon, O., Sevilla, K., Ubaldi, F., Monti, P., De Dios, O. G., Paolucci, F..  2019.  Multi-Operator Orchestration of Connectivity Services Exploiting Stateful BRPC and BGP-LS in the 5GEx Sandbox. 2019 Optical Fiber Communications Conference and Exhibition (OFC). :1–3.
QoS-based connectivity coordinated by the 5GEx Multi-domain Orchestrator exploiting novel stateful BRPC is demonstrated for the first time over a multi-operator multi-technology transport network within the European 5GEx Sandbox, including Segment Routing and optical domains.
Jadidi, Mahya Soleimani, Zaborski, Mariusz, Kidney, Brian, Anderson, Jonathan.  2019.  CapExec: Towards Transparently-Sandboxed Services. 2019 15th International Conference on Network and Service Management (CNSM). :1–5.
Network services are among the riskiest programs executed by production systems. Such services execute large quantities of complex code and process data from arbitrary — and untrusted — network sources, often with high levels of system privilege. It is desirable to confine system services to a least-privileged environment so that the potential damage from a malicious attacker can be limited, but existing mechanisms for sandboxing services require invasive and system-specific code changes and are insufficient to confine broad classes of network services. Rather than sandboxing one service at a time, we propose that the best place to add sandboxing to network services is in the service manager that starts those services. As a first step towards this vision, we propose CapExec, a process supervisor that can execute a single service within a sandbox based on a service declaration file in which, required resources whose limited access to are supported by Caper services, are specified. Using the Capsicum compartmentalization framework and its Casper service framework, CapExec provides robust application sandboxing without requiring any modifications to the application itself. We believe that this is the first step towards ubiquitous sandboxing of network services without the costs of virtualization.
2019-06-24
Ijaz, M., Durad, M. H., Ismail, M..  2019.  Static and Dynamic Malware Analysis Using Machine Learning. 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :687–691.

Malware detection is an indispensable factor in security of internet oriented machines. The combinations of different features are used for dynamic malware analysis. The different combinations are generated from APIs, Summary Information, DLLs and Registry Keys Changed. Cuckoo sandbox is used for dynamic malware analysis, which is customizable, and provide good accuracy. More than 2300 features are extracted from dynamic analysis of malware and 92 features are extracted statically from binary malware using PEFILE. Static features are extracted from 39000 malicious binaries and 10000 benign files. Dynamically 800 benign files and 2200 malware files are analyzed in Cuckoo Sandbox and 2300 features are extracted. The accuracy of dynamic malware analysis is 94.64% while static analysis accuracy is 99.36%. The dynamic malware analysis is not effective due to tricky and intelligent behaviours of malwares. The dynamic analysis has some limitations due to controlled network behavior and it cannot be analyzed completely due to limited access of network.

2019-03-11
Hunt, Tyler, Zhu, Zhiting, Xu, Yuanzhong, Peter, Simon, Witchel, Emmett.  2018.  Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data. ACM Trans. Comput. Syst.. 35:13:1–13:32.
Users of modern data-processing services such as tax preparation or genomic screening are forced to trust them with data that the users wish to keep secret. Ryoan1 protects secret data while it is processed by services that the data owner does not trust. Accomplishing this goal in a distributed setting is difficult, because the user has no control over the service providers or the computational platform. Confining code to prevent it from leaking secrets is notoriously difficult, but Ryoan benefits from new hardware and a request-oriented data model. Ryoan provides a distributed sandbox, leveraging hardware enclaves (e.g., Intel’s software guard extensions (SGX) [40]) to protect sandbox instances from potentially malicious computing platforms. The protected sandbox instances confine untrusted data-processing modules to prevent leakage of the user’s input data. Ryoan is designed for a request-oriented data model, where confined modules only process input once and do not persist state about the input. We present the design and prototype implementation of Ryoan and evaluate it on a series of challenging problems including email filtering, health analysis, image processing and machine translation.
2018-05-09
Bauer, Aaron, Butler, Eric, Popović, Zoran.  2017.  Dragon Architect: Open Design Problems for Guided Learning in a Creative Computational Thinking Sandbox Game. Proceedings of the 12th International Conference on the Foundations of Digital Games. :26:1–26:6.

Educational games have a potentially significant role to play in the increasing efforts to expand access to computer science education. Computational thinking is an area of particular interest, including the development of problem-solving strategies like divide and conquer. Existing games designed to teach computational thinking generally consist of either open-ended exploration with little direct guidance or a linear series of puzzles with lots of direct guidance, but little exploration. Educational research indicates that the most effective approach may be a hybrid of these two structures. We present Dragon Architect, an educational computational thinking game, and use it as context for a discussion of key open problems in the design of games to teach computational thinking. These problems include how to directly teach computational thinking strategies, how to achieve a balance between exploration and direct guidance, and how to incorporate engaging social features. We also discuss several important design challenges we have encountered during the design of Dragon Architect. We contend the problems we describe are relevant to anyone making educational games or systems that need to teach complex concepts and skills.

Lamowski, Benjamin, Weinhold, Carsten, Lackorzynski, Adam, Härtig, Hermann.  2017.  Sandcrust: Automatic Sandboxing of Unsafe Components in Rust. Proceedings of the 9th Workshop on Programming Languages and Operating Systems. :51–57.

System-level development has been dominated by traditional programming languages such as C and C++ for decades. These languages are inherently unsafe regarding memory management. Even experienced developers make mistakes that open up security holes or compromise the safety properties of software. The Rust programming language is targeted at the systems domain and aims to eliminate memory-related programming errors by enforcing a strict memory model at the language and compiler level. Unfortunately, these compile-time guarantees no longer hold when a Rust program is linked against a library written in unsafe C, which is commonly required for functionality where an implementation in Rust is not yet available. In this paper, we present Sandcrust, an easy-to-use sand-boxing solution for isolating code and data of a C library in a separate process. This isolation protects the Rust-based main program from any memory corruption caused by bugs in the unsafe library, which would otherwise invalidate the memory safety guarantees of Rust. Sandcrust is based on the Rust macro system and requires no modification to the compiler or runtime, but only straightforward annotation of functions that call the library's API.

Raimbault, Marcelo Spiezzi, Clark, Corey.  2017.  Session Based Behavioral Clustering in Open World Sandbox Game TUG. Proceedings of the 12th International Conference on the Foundations of Digital Games. :43:1–43:4.

Classifying users according to their behaviors is a complex problem due to the high-volume of data and the unclear association between distinct data points. Although over the past years behavioral researches has mainly focused on Massive Multiplayer Online Role Playing Games (MMORPG), such as World of Warcraft (WoW), which has predefined player classes, there has been little applied to Open World Sandbox Games (OWSG). Some OWSG do not have player classes or structured linear gameplay mechanics, as freedom is given to the player to freely wander and interact with the virtual world. This research focuses on identifying different play styles that exist within the non-structured gameplay sessions of OWSG. This paper uses the OWSG TUG as a case study and over a period of forty-five days, a database stored selected gameplay events happening on the research server. The study applied k-means clustering to this dataset and evaluated the resulting distinct behavioral profiles to classify player sessions on an open world sandbox game.