Visible to the public Biblio

Filters: Keyword is Probes  [Clear All Filters]
Song, Guanglei, He, Lin, Wang, Zhiliang, Yang, Jiahai, Jin, Tao, Liu, Jieling, Li, Guo.  2020.  Towards the Construction of Global IPv6 Hitlist and Efficient Probing of IPv6 Address Space. 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS). :1–10.
Fast IPv4 scanning has made sufficient progress in network measurement and security research. However, it is infeasible to perform brute-force scanning of the IPv6 address space. We can find active IPv6 addresses through scanning candidate addresses generated by the state-of-the-art algorithms, whose probing efficiency of active IPv6 addresses, however, is still very low. In this paper, we aim to improve the probing efficiency of IPv6 addresses in two ways. Firstly, we perform a longitudinal active measurement study over four months, building a high-quality dataset called hitlist with more than 1.3 billion IPv6 addresses distributed in 45.2k BGP prefixes. Different from previous work, we probe the announced BGP prefixes using a pattern-based algorithm, which makes our dataset overcome the problems of uneven address distribution and low active rate. Secondly, we propose an efficient address generation algorithm DET, which builds a density space tree to learn high-density address regions of the seed addresses in linear time and improves the probing efficiency of active addresses. On the public hitlist and our hitlist, we compare our algorithm DET against state-of-the-art algorithms and find that DET increases the de-aliased active address ratio by 10%, and active address (including aliased addresses) ratio by 14%, by scanning 50 million addresses.
Das, Debayan, Nath, Mayukh, Ghosh, Santosh, Sen, Shreyas.  2020.  Killing EM Side-Channel Leakage at its Source. 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS). :1108—1111.
Side-channel analysis (SCA) is a big threat to the security of connected embedded devices. Over the last few years, physical non-invasive SCA attacks utilizing the electromagnetic (EM) radiation (EM side-channel `leakage') from a crypto IC has gained huge momentum owing to the availability of the low-cost EM probes and development of the deep-learning (DL) based profiling attacks. In this paper, our goal is to understand the source of the EM leakage by analyzing a white-box modeling of the EM leakage from the crypto IC, leading towards a low-overhead generic countermeasure. To kill this EM leakage from its source, the solution utilizes a signature attenuation hardware (SAH) encapsulating the crypto core locally within the lower metal layers such that the critical correlated crypto current signature is significantly attenuated before it passes through the higher metal layers to connect to the external pin. The protection circuit utilizing AES256 as the crypto core is fabricated in 65nm process and shows for the first time the effects of metal routing on the EM leakage. The \textbackslashtextgreater 350× signature attenuation of the SAH together with the local lower metal routing ensured that the protected AES remains secure even after 1B measurements for both EM and power SCA, which is an 100× improvement over the state-of-the-art with comparable overheads. Overall, with the combination of the 2 techniques - signature suppression and local lower metal routing, we are able to kill the EM side-channel leakage at its source such that the correlated signature is not passed through the top-level metals, MIM capacitors, or on-board inductors, which are the primary sources of EM leakage, thereby preventing EM SCA attacks.
Tong, Zhongkai, Zhu, Ziyuan, Wang, Zhanpeng, Wang, Limin, Zhang, Yusha, Liu, Yuxin.  2020.  Cache side-channel attacks detection based on machine learning. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :919—926.
Security has always been one of the main concerns in the field of computer architecture and cloud computing. Cache-based side-channel attacks pose a threat to almost all existing architectures and cloud computing. Especially in the public cloud, the cache is shared among multiple tenants, and cache attacks can make good use of this to extract information. Cache side-channel attacks are a problem to be solved for security, in which how to accurately detect cache side-channel attacks has been a research hotspot. Because the cache side-channel attack does not require the attacker to physically contact the target device and does not need additional devices to obtain the side channel information, the cache-side channel attack is efficient and hidden, which poses a great threat to the security of cryptographic algorithms. Based on the AES algorithm, this paper uses hardware performance counters to obtain the features of different cache events under Flush + Reload, Prime + Probe, and Flush + Flush attacks. Firstly, the random forest algorithm is used to filter the cache features, and then the support vector machine algorithm is used to model the system. Finally, high detection accuracy is achieved under different system loads. The detection accuracy of the system is 99.92% when there is no load, the detection accuracy is 99.85% under the average load, and the detection accuracy under full load is 96.57%.
Song, Jie, Chen, Yixin, Ye, Jingwen, Wang, Xinchao, Shen, Chengchao, Mao, Feng, Song, Mingli.  2020.  DEPARA: Deep Attribution Graph for Deep Knowledge Transferability. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :3921–3929.
Exploring the intrinsic interconnections between the knowledge encoded in PRe-trained Deep Neural Networks (PR-DNNs) of heterogeneous tasks sheds light on their mutual transferability, and consequently enables knowledge transfer from one task to another so as to reduce the training effort of the latter. In this paper, we propose the DEeP Attribution gRAph (DEPARA) to investigate the transferability of knowledge learned from PR-DNNs. In DEPARA, nodes correspond to the inputs and are represented by their vectorized attribution maps with regards to the outputs of the PR-DNN. Edges denote the relatedness between inputs and are measured by the similarity of their features extracted from the PR-DNN. The knowledge transferability of two PR-DNNs is measured by the similarity of their corresponding DEPARAs. We apply DEPARA to two important yet under-studied problems in transfer learning: pre-trained model selection and layer selection. Extensive experiments are conducted to demonstrate the effectiveness and superiority of the proposed method in solving both these problems. Code, data and models reproducing the results in this paper are available at
Marechal, Emeline, Donnet, Benoit.  2020.  Network Fingerprinting: Routers under Attack. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :594–599.
Nowadays, simple tools such as traceroute can be used by attackers to acquire topology knowledge remotely. Worse still, attackers can use a lightweight fingerprinting technique, based on traceroute and ping, to retrieve the routers brand, and use that knowledge to launch targeted attacks. In this paper, we show that the hardware ecosystem of network operators can greatly vary from one to another, with all potential security implications it brings. Indeed, depending on the autonomous system (AS), not all brands play the same role in terms of network connectivity. An attacker could find an interest in targeting a specific hardware vendor in a particular AS, if known defects are present in this hardware, and if the AS relies heavily on it for forwarding its traffic.
Kalin, J., Ciolino, M., Noever, D., Dozier, G..  2020.  Black Box to White Box: Discover Model Characteristics Based on Strategic Probing. 2020 Third International Conference on Artificial Intelligence for Industries (AI4I). :60—63.

In Machine Learning, White Box Adversarial Attacks rely on knowing underlying knowledge about the model attributes. This works focuses on discovering to distrinct pieces of model information: the underlying architecture and primary training dataset. With the process in this paper, a structured set of input probes and the output of the model become the training data for a deep classifier. Two subdomains in Machine Learning are explored - image based classifiers and text transformers with GPT-2. With image classification, the focus is on exploring commonly deployed architectures and datasets available in popular public libraries. Using a single transformer architecture with multiple levels of parameters, text generation is explored by fine tuning off different datasets. Each dataset explored in image and text are distinguishable from one another. Diversity in text transformer outputs implies further research is needed to successfully classify architecture attribution in text domain.

Yu, M., He, T., McDaniel, P., Burke, Q. K..  2020.  Flow Table Security in SDN: Adversarial Reconnaissance and Intelligent Attacks. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1519—1528.

The performance-driven design of SDN architectures leaves many security vulnerabilities, a notable one being the communication bottleneck between the controller and the switches. Functioning as a cache between the controller and the switches, the flow table mitigates this bottleneck by caching flow rules received from the controller at each switch, but is very limited in size due to the high cost and power consumption of the underlying storage medium. It thus presents an easy target for attacks. Observing that many existing defenses are based on simplistic attack models, we develop a model of intelligent attacks that exploit specific cache-like behaviors of the flow table to infer its internal configuration and state, and then design attack parameters accordingly. Our evaluations show that such attacks can accurately expose the internal parameters of the target flow table and cause measurable damage with the minimum effort.

Sunny, S. M. N. A., Liu, X., Shahriar, M. R..  2018.  Remote Monitoring and Online Testing of Machine Tools for Fault Diagnosis and Maintenance Using MTComm in a Cyber-Physical Manufacturing Cloud. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). :532—539.

Existing systems allow manufacturers to acquire factory floor data and perform analysis with cloud applications for machine health monitoring, product quality prediction, fault diagnosis and prognosis etc. However, they do not provide capabilities to perform testing of machine tools and associated components remotely, which is often crucial to identify causes of failure. This paper presents a fault diagnosis system in a cyber-physical manufacturing cloud (CPMC) that allows manufacturers to perform diagnosis and maintenance of manufacturing machine tools through remote monitoring and online testing using Machine Tool Communication (MTComm). MTComm is an Internet scale communication method that enables both monitoring and operation of heterogeneous machine tools through RESTful web services over the Internet. It allows manufacturers to perform testing operations from cloud applications at both machine and component level for regular maintenance and fault diagnosis. This paper describes different components of the system and their functionalities in CPMC and techniques used for anomaly detection and remote online testing using MTComm. It also presents the development of a prototype of the proposed system in a CPMC testbed. Experiments were conducted to evaluate its performance to diagnose faults and test machine tools remotely during various manufacturing scenarios. The results demonstrated excellent feasibility to detect anomaly during manufacturing operations and perform testing operations remotely from cloud applications using MTComm.

Usama, M., Asim, M., Latif, S., Qadir, J., Ala-Al-Fuqaha.  2019.  Generative Adversarial Networks For Launching and Thwarting Adversarial Attacks on Network Intrusion Detection Systems. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :78—83.

Intrusion detection systems (IDSs) are an essential cog of the network security suite that can defend the network from malicious intrusions and anomalous traffic. Many machine learning (ML)-based IDSs have been proposed in the literature for the detection of malicious network traffic. However, recent works have shown that ML models are vulnerable to adversarial perturbations through which an adversary can cause IDSs to malfunction by introducing a small impracticable perturbation in the network traffic. In this paper, we propose an adversarial ML attack using generative adversarial networks (GANs) that can successfully evade an ML-based IDS. We also show that GANs can be used to inoculate the IDS and make it more robust to adversarial perturbations.

Radha, P., Selvakumar, N., Sekar, J. Raja, Johnsonselva, J. V..  2018.  Enhancing Internet of Battle Things using Ultrasonic assisted Non-Destructive Testing (Technical solution). 2018 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). :1—4.

The subsystem of IoMT (Internet of Military of Things) called IoBT (Internet of Battle of Things) is the major resource of the military where the various stack holders of the battlefield and different categories of equipment are tightly integrated through the internet. The proposed architecture mentioned in this paper will be helpful to design IoBT effectively for warfare using irresistible technologies like information technology, embedded technology, and network technology. The role of Machine intelligence is essential in IoBT to create smart things and provide accurate solutions without human intervention. Non-Destructive Testing (NDT) is used in Industries to examine and analyze the invisible defects of equipment. Generally, the ultrasonic waves are used to examine and analyze the internal defects of materials. Hence the proposed architecture of IoBT is enhanced by ultrasonic based NDT to study the properties of the things of the battlefield without causing any damage.

Dagelić, Ante, Perković, Toni, Čagalj, Mario.  2019.  Location Privacy and Changes in WiFi Probe Request Based Connection Protocols Usage Through Years. 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech). :1–5.
Location privacy is one of most frequently discussed terms in the mobile devices security breaches and data leaks. With the expected growth of the number of IoT devices, which is 20 billions by 2020., location privacy issues will be further brought to focus. In this paper we give an overview of location privacy implications in wireless networks, mainly focusing on user's Preferred Network List (list of previously used WiFi Access Points) contained within WiFi Probe Request packets. We will showcase the existing work and suggest interesting topics for future work. A chronological overview of sensitive location data we collected on a musical festival in years 2014, 2015, 2017 and 2018 is provided. We conclude that using passive WiFi monitoring scans produces different results through years, with a significant increase in the usage of a more secure Broadcast Probe Request packets and MAC address randomizations by the smartphone operating systems.
Li, Ge, Iyer, Vishnuvardhan, Orshansky, Michael.  2019.  Securing AES against Localized EM Attacks through Spatial Randomization of Dataflow. 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :191—197.
A localized electromagnetic (EM) attack is a potent threat to security of embedded cryptographic implementations. The attack utilizes high resolution EM probes to localize and exploit information leakage in sub-circuits of a system, providing information not available in traditional EM and power attacks. In this paper, we propose a countermeasure based on randomizing the assignment of sensitive data to parallel datapath components in a high-performance implementation of AES. In contrast to a conventional design where each state register byte is routed to a fixed S-box, a permutation network, controlled by a transient random value, creates a dynamic random mapping between the state registers and the set of S-boxes. This randomization results in a significant reduction of exploitable leakage.We demonstrate the countermeasure's effectiveness under two attack scenarios: a more powerful attack that assumes a fully controlled access to an attacked implementation for building a priori EM-profiles, and a generic attack based on the black-box model. Spatial randomization leads to a 150× increase of the minimum traces to disclosure (MTD) for the profiled attack and a 3.25× increase of MTD for the black-box model attack.
Sutton, Sara, Bond, Benjamin, Tahiri, Sementa, Rrushi, Julian.  2019.  Countering Malware Via Decoy Processes with Improved Resource Utilization Consistency. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :110—119.
The concept of a decoy process is a new development of defensive deception beyond traditional honeypots. Decoy processes can be exceptionally effective in detecting malware, directly upon contact or by redirecting malware to decoy I/O. A key requirement is that they resemble their real counterparts very closely to withstand adversarial probes by threat actors. To be usable, decoy processes need to consume only a small fraction of the resources consumed by their real counterparts. Our contribution in this paper is twofold. We attack the resource utilization consistency of decoy processes provided by a neural network with a heatmap training mechanism, which we find to be insufficiently trained. We then devise machine learning over control flow graphs that improves the heatmap training mechanism. A neural network retrained by our work shows higher accuracy and defeats our attacks without a significant increase in its own resource utilization.
Kolberg, Jascha, Bauspieß, Pia, Gomez-Barrero, Marta, Rathgeb, Christian, Dürmuth, Markus, Busch, Christoph.  2019.  Template Protection based on Homomorphic Encryption: Computationally Efficient Application to Iris-Biometric Verification and Identification. 2019 IEEE International Workshop on Information Forensics and Security (WIFS). :1—6.

When employing biometric recognition systems, we have to take into account that biometric data are considered sensitive data. This has raised some privacy issues, and therefore secure systems providing template protection are required. Using homomorphic encryption, permanent protection can be ensured, since templates are stored and compared in the encrypted domain. In addition, the unprotected system's accuracy is preserved. To solve the problem of the computational overload linked to the encryption scheme, we present an early decision making strategy for iris-codes. In order to improve the recognition accuracy, the most consistent bits of the iris-code are moved to the beginning of the template. This allows an accurate block-wise comparison, thereby reducing the execution time. Hence, the resulting system grants template protection in a computationally efficient way. More specifically, in the experimental evaluation in identification mode, the block-wise comparison achieves a 92% speed-up on the IITD database with 300 enrolled templates.

Urien, Pascal.  2019.  Designing Attacks Against Automotive Control Area Network Bus and Electronic Control Units. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–4.
Security is a critical issue for new car generation targeting intelligent transportation systems (ITS), involving autonomous and connected vehicles. In this work we designed a low cost CAN probe and defined analysis tools in order to build attack scenarios. We reuse some threats identified by a previous work. Future researches will address new security protocols.
Khorsandroo, Sajad, Tosun, Ali Saman.  2018.  Time Inference Attacks on Software Defined Networks: Challenges and Countermeasures. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). :342—349.

Through time inference attacks, adversaries fingerprint SDN controllers, estimate switches flow-table size, and perform flow state reconnaissance. In fact, timing a SDN and analyzing its results can expose information which later empowers SDN resource-consumption or saturation attacks. In the real world, however, launching such attacks is not easy. This is due to some challenges attackers may encounter while attacking an actual SDN deployment. These challenges, which are not addressed adequately in the related literature, are investigated in this paper. Accordingly, practical solutions to mitigate such attacks are also proposed. Discussed challenges are clarified by means of conducting extensive experiments on an actual cloud data center testbed. Moreover, mitigation schemes have been implemented and examined in details. Experimental results show that proposed countermeasures effectively block time inference attacks.

Saridou, Betty, Shiaeles, Stavros, Papadopoulos, Basil.  2019.  DDoS Attack Mitigation through Root-DNS Server: A Case Study. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:60—65.

Load balancing and IP anycast are traffic routing algorithms used to speed up delivery of the Domain Name System. In case of a DDoS attack or an overload condition, the value of these protocols is critical, as they can provide intrinsic DDoS mitigation with the failover alternatives. In this paper, we present a methodology for predicting the next DNS response in the light of a potential redirection to less busy servers, in order to mitigate the size of the attack. Our experiments were conducted using data from the Nov. 2015 attack of the Root DNS servers and Logistic Regression, k-Nearest Neighbors, Support Vector Machines and Random Forest as our primary classifiers. The models were able to successfully predict up to 83% of responses for Root Letters that operated on a small number of sites and consequently suffered the most during the attacks. On the other hand, regarding DNS requests coming from more distributed Root servers, the models demonstrated lower accuracy. Our analysis showed a correlation between the True Positive Rate metric and the number of sites, as well as a clear need for intelligent management of traffic in load balancing practices.

Dishington, Cole, Sharma, Dilli P., Kim, Dong Seong, Cho, Jin-Hee, Moore, Terrence J., Nelson, Frederica F..  2019.  Security and Performance Assessment of IP Multiplexing Moving Target Defence in Software Defined Networks. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :288–295.

With the interconnection of services and customers, network attacks are capable of large amounts of damage. Flexible Random Virtual IP Multiplexing (FRVM) is a Moving Target Defence (MTD) technique that protects against reconnaissance and access with address mutation and multiplexing. Security techniques must be trusted, however, FRVM, along with past MTD techniques, have gaps in realistic evaluation and thorough analysis of security and performance. FRVM, and two comparison techniques, were deployed on a virtualised network to demonstrate FRVM's security and performance trade-offs. The key results include the security and performance trade-offs of address multiplexing and address mutation. The security benefit of IP address multiplexing is much greater than its performance overhead, deployed on top of address mutation. Frequent address mutation significantly increases an attackers' network scan durations as well as effectively obfuscating and hiding network configurations.

Das, Debayan, Nath, Mayukh, Chatterjee, Baibhab, Ghosh, Santosh, Sen, Shreyas.  2019.  S℡LAR: A Generic EM Side-Channel Attack Protection through Ground-Up Root-Cause Analysis. 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :11–20.
The threat of side-channels is becoming increasingly prominent for resource-constrained internet-connected devices. While numerous power side-channel countermeasures have been proposed, a promising approach to protect the non-invasive electromagnetic side-channel attacks has been relatively scarce. Today's availability of high-resolution electromagnetic (EM) probes mandates the need for a low-overhead solution to protect EM side-channel analysis (SCA) attacks. This work, for the first time, performs a white-box analysis to root-cause the origin of the EM leakage from an integrated circuit. System-level EM simulations with Intel 32 nm CMOS technology interconnect stack, as an example, reveals that the EM leakage from metals above layer 8 can be detected by an external non-invasive attacker with the commercially available state-of-the-art EM probes. Equipped with this `white-box' understanding, this work proposes S℡LAR: Signature aTtenuation Embedded CRYPTO with Low-Level metAl Routing, which is a two-stage solution to eliminate the critical signal radiation from the higher-level metal layers. Firstly, we propose routing the entire cryptographic core within the local lower-level metal layers, whose leakage cannot be picked up by an external attacker. Then, the entire crypto IP is embedded within a Signature Attenuation Hardware (SAH) which in turn suppresses the critical encryption signature before it routes the current signature to the highly radiating top-level metal layers. System-level implementation of the S℡LAR hardware with local lower-level metal routing in TSMC 65 nm CMOS technology, with an AES-128 encryption engine (as an example cryptographic block) operating at 40 MHz, shows that the system remains secure against EM SCA attack even after 1M encryptions, with 67% energy efficiency and 1.23× area overhead compared to the unprotected AES.
Roukounaki, Aikaterini, Efremidis, Sofoklis, Soldatos, John, Neises, Juergen, Walloschke, Thomas, Kefalakis, Nikos.  2019.  Scalable and Configurable End-to-End Collection and Analysis of IoT Security Data : Towards End-to-End Security in IoT Systems. 2019 Global IoT Summit (GIoTS). :1–6.

In recent years, there is a surge of interest in approaches pertaining to security issues of Internet of Things deployments and applications that leverage machine learning and deep learning techniques. A key prerequisite for enabling such approaches is the development of scalable infrastructures for collecting and processing security-related datasets from IoT systems and devices. This paper introduces such a scalable and configurable data collection infrastructure for data-driven IoT security. It emphasizes the collection of (security) data from different elements of IoT systems, including individual devices and smart objects, edge nodes, IoT platforms, and entire clouds. The scalability of the introduced infrastructure stems from the integration of state of the art technologies for large scale data collection, streaming and storage, while its configurability relies on an extensible approach to modelling security data from a variety of IoT systems and devices. The approach enables the instantiation and deployment of security data collection systems over complex IoT deployments, which is a foundation for applying effective security analytics algorithms towards identifying threats, vulnerabilities and related attack patterns.

Belavagi, Manjula C, Muniyal, Balachandra.  2016.  Game theoretic approach towards intrusion detection. 2016 International Conference on Inventive Computation Technologies (ICICT). 1:1–5.
Today's network is distributed and heterogeneous in nature and has numerous applications which affect day to day life, such as e-Banking, e-Booking of tickets, on line shopping etc. Hence the security of the network is crucial. Threats in the network can be due to intrusions. Such threats can be observed and handled using Intrusion Detection System. The security can be achieved using intrusion detection system, which observes the data traffic and identifies it as an intrusion or not. The objective of this paper is to design a model using game theoretic approach for intrusion detection. Game model is designed by defining players, strategies and utility functions to identify the Probe attacks. This model is tested with NSLKDD data set. The model is the Probe attacks are identified by dominated strategies elimination method. Experimental results shows that game model identifies the attacks with good detection rate.
Vaseer, G., Ghai, G., Ghai, D..  2018.  Distributed Trust-Based Multiple Attack Prevention for Secure MANETs. 2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). :108–113.

Mobile ad hoc networks (MANETs) are self-configuring, dynamic networks in which nodes are free to move. These nodes are susceptible to various malicious attacks. In this paper, we propose a distributed trust-based security scheme to prevent multiple attacks such as Probe, Denial-of-Service (DoS), Vampire, User-to-Root (U2R) occurring simultaneously. We report above 95% accuracy in data transmission and reception by applying the proposed scheme. The simulation has been carried out using network simulator ns-2 in a AODV routing protocol environment. To the best of the authors' knowledge, this is the first work reporting a distributed trust-based prevention scheme for preventing multiple attacks. We also check the scalability of the technique using variable node densities in the network.

Naik, N., Jenkins, P., Cooke, R., Yang, L..  2018.  Honeypots That Bite Back: A Fuzzy Technique for Identifying and Inhibiting Fingerprinting Attacks on Low Interaction Honeypots. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1-8.

The development of a robust strategy for network security is reliant upon a combination of in-house expertise and for completeness attack vectors used by attackers. A honeypot is one of the most popular mechanisms used to gather information about attacks and attackers. However, low-interaction honeypots only emulate an operating system and services, and are more prone to a fingerprinting attack, resulting in severe consequences such as revealing the identity of the honeypot and thus ending the usefulness of the honeypot forever, or worse, enabling it to be converted into a bot used to attack others. A number of tools and techniques are available both to fingerprint low-interaction honeypots and to defend against such fingerprinting; however, there is an absence of fingerprinting techniques to identify the characteristics and behaviours that indicate fingerprinting is occurring. Therefore, this paper proposes a fuzzy technique to correlate the attack actions and predict the probability that an attack is a fingerprinting attack on the honeypot. Initially, an experimental assessment of the fingerprinting attack on the low- interaction honeypot is performed, and a fingerprinting detection mechanism is proposed that includes the underlying principles of popular fingerprinting attack tools. This implementation is based on a popular and commercially available low-interaction honeypot for Windows - KFSensor. However, the proposed fuzzy technique is a general technique and can be used with any low-interaction honeypot to aid in the identification of the fingerprinting attack whilst it is occurring; thus protecting the honeypot from the fingerprinting attack and extending its life.

Lu, Z., Chen, F., Cheng, G., Ai, J..  2017.  A secure control plane for SDN based on Bayesian Stackelberg Games. 2017 3rd IEEE International Conference on Computer and Communications (ICCC). :1259–1264.

Vulnerabilities of controller that is caused by separation of control and forwarding lead to a threat which attacker can take remote access detection in SDN. The current work proposes a controller architecture called secure control plane (SCP) that enhances security and increase the difficulty of the attack through a rotation of heterogeneous and multiple controllers. Specifically, a dynamic-scheduling method based on Bayesian Stackelberg Games is put forward to maximize security reward of defender during each migration. Secondly, introducing a self-cleaning mechanism combined with game strategy aims at improving the secure level and form a closed-loop defense mechanism; Finally, the experiments described quantitatively defender will get more secure gain based on the game strategy compared with traditional strategy (pure and random strategies), and the self-cleaning mechanism can make the control plane to be in a higher level of security.

Metongnon, L., Ezin, E. C., Sadre, R..  2017.  Efficient Probing of Heterogeneous IoT Networks. 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :1052–1058.

The Internet of Things leads to the inter-connectivity of a wide range of devices. This heterogeneity of hardware and software poses significant challenges to security. Constrained IoT devices often do not have enough resources to carry the overhead of an intrusion protection system or complex security protocols. A typical initial step in network security is a network scan in order to find vulnerable nodes. In the context of IoT, the initiator of the scan can be particularly interested in finding constrained devices, assuming that they are easier targets. In IoT networks hosting devices of various types, performing a scan with a high discovery rate can be a challenging task, since low-power networks such as IEEE 802.15.4 are easily overloaded. In this paper, we propose an approach to increase the efficiency of network scans by combining them with active network measurements. The measurements allow the scanner to differentiate IoT nodes by the used network technology. We show that the knowledge gained from this differentiation can be used to control the scan strategy in order to reduce probe losses.