Visible to the public Biblio

Found 203 results

Filters: Keyword is Hardware  [Clear All Filters]
2019-09-11
Duncan, A., Jiang, L., Swany, M..  2018.  Repurposing SoC Analog Circuitry for Additional COTS Hardware Security. 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :201–204.

This paper introduces a new methodology to generate additional hardware security in commercial off-the-shelf (COTS) system-on-a-chip (SoC) integrated circuits (ICs) that have already been fabricated and packaged. On-chip analog hardware blocks such as analog to digital converters (ADCs), digital to analog converters (DACs) and comparators residing within an SoC are repurposed and connected to one another to generate unique physically unclonable function (PUF) responses. The PUF responses are digitized and processed on-chip to create keys for use in encryption and device authentication activities. Key generation and processing algorithms are presented that minimize the effects of voltage and temperature fluctuations to maximize the repeatability of a key within a device. Experimental results utilizing multiple on-chip analog blocks inside a common COTS microcontroller show reliable key generation with minimal overhead.

2019-09-09
Zhang, Z., Yu, Q., Njilla, L., Kamhoua, C..  2018.  FPGA-oriented moving target defense against security threats from malicious FPGA tools. 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :163–166.
The imbalance relationship between FPGA hardware/software providers and FPGA users challenges the assurance of secure design on FPGAs. Existing efforts on FPGA security primarily focus on reverse engineering the downloaded FPGA configuration, retrieving the authentication code or crypto key stored on the embedded memory in FPGAs, and countermeasures for the security threats above. In this work, we investigate new security threats from malicious FPGA tools, and identify stealthy attacks that could occur during FPGA deployment. To address those attacks, we exploit the principles of moving target defense (MTD) and propose a FPGA-oriented MTD (FOMTD) method. Our method is composed of three defense lines, which are formed by an improved user constraint file, random selection of design replicas, and runtime submodule assembling, respectively. The FPGA emulation results show that the proposed FOMTD method reduces the hardware Trojan hit rate by 60% over the baseline, at the cost of 10.76% more power consumption.
2019-08-26
Wang, C., Jiang, Y., Zhao, X., Song, X., Gu, M., Sun, J..  2018.  Weak-Assert: A Weakness-Oriented Assertion Recommendation Toolkit for Program Analysis. 2018 IEEE/ACM 40th International Conference on Software Engineering: Companion (ICSE-Companion). :69–72.

Assertions are helpful in program analysis, such as software testing and verification. The most challenging part of automatically recommending assertions is to design the assertion patterns and to insert assertions in proper locations. In this paper, we develop Weak-Assert, a weakness-oriented assertion recommendation toolkit for program analysis of C code. A weakness-oriented assertion is an assertion which can help to find potential program weaknesses. Weak-Assert uses well-designed patterns to match the abstract syntax trees of source code automatically. It collects significant messages from trees and inserts assertions into proper locations of programs. These assertions can be checked by using program analysis techniques. The experiments are set up on Juliet test suite and several actual projects in Github. Experimental results show that Weak-Assert helps to find 125 program weaknesses in 26 actual projects. These weaknesses are confirmed manually to be triggered by some test cases.

2019-08-12
Eetha, S., Agrawal, S., Neelam, S..  2018.  Zynq FPGA Based System Design for Video Surveillance with Sobel Edge Detection. 2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). :76–79.

Advancements in semiconductor domain gave way to realize numerous applications in Video Surveillance using Computer vision and Deep learning, Video Surveillances in Industrial automation, Security, ADAS, Live traffic analysis etc. through image understanding improves efficiency. Image understanding requires input data with high precision which is dependent on Image resolution and location of camera. The data of interest can be thermal image or live feed coming for various sensors. Composite(CVBS) is a popular video interface capable of streaming upto HD(1920x1080) quality. Unlike high speed serial interfaces like HDMI/MIPI CSI, Analog composite video interface is a single wire standard supporting longer distances. Image understanding requires edge detection and classification for further processing. Sobel filter is one the most used edge detection filter which can be embedded into live stream. This paper proposes Zynq FPGA based system design for video surveillance with Sobel edge detection, where the input Composite video decoded (Analog CVBS input to YCbCr digital output), processed in HW and streamed to HDMI display simultaneously storing in SD memory for later processing. The HW design is scalable for resolutions from VGA to Full HD for 60fps and 4K for 24fps. The system is built on Xilinx ZC702 platform and TVP5146 to showcase the functional path.

2019-08-05
Lei, S., Zewu, W., Kun, Z., Ruichen, S., Shuai, L..  2018.  Research and design of cryptography cloud framework. 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). :147–154.

Since the application mode of cryptography technology currently has different types in the cloud environment, a novel cryptography cloud framework was proposed, due to the non-expandability of cryptography resources. Through researching on the application models of the current encryption technology, the cryptography service demand under the cloud environment and the virtual structure of the cloud cryptography machine, this paper designed the framework of the cryptography cloud framework that provides cryptography services with the cloud computing mode. the design idea of the framework is expounded from two aspects include the function of modules and service flow of cryptography cloud, which resulted in the improvement of the flexibility of the application of cryptography technology in the cloud environment. Through the analysis of system function and management mode, it illustrated the availability and security of cryptography cloud framework. It was proved that cryptography cloud has the characteristics of high-availability in the implementation and experiment, and it can satisfy cryptography service demand in the cloud environment.

2019-07-01
Li, D., Zhang, Z., Liao, W., Xu, Z..  2018.  KLRA: A Kernel Level Resource Auditing Tool For IoT Operating System Security. 2018 IEEE/ACM Symposium on Edge Computing (SEC). :427-432.

Nowadays, the rapid development of the Internet of Things facilitates human life and work, while it also brings great security risks to the society due to the frequent occurrence of various security issues. IoT device has the characteristics of large-scale deployment and single responsibility application, which makes it easy to cause a chain reaction and results in widespread privacy leakage and system security problems when the software vulnerability is identified. It is difficult to guarantee that there is no security hole in the IoT operating system which is usually designed for MCU and has no kernel mode. An alternative solution is to identify the security issues in the first time when the system is hijacked and suspend the suspicious task before it causes irreparable damage. This paper proposes KLRA (A Kernel Level Resource Auditing Tool) for IoT Operating System Security This tool collects the resource-sensitive events in the kernel and audit the the resource consumption pattern of the system at the same time. KLRA can take fine-grained events measure with low cost and report the relevant security warning in the first time when the behavior of the system is abnormal compared with daily operations for the real responsibility of this device. KLRA enables the IoT operating system for MCU to generate the security early warning and thereby provides a self-adaptive heuristic security mechanism for the entire IoT system.

2019-05-20
Hu, W., Ardeshiricham, A., Gobulukoglu, M. S., Wang, X., Kastner, R..  2018.  Property Specific Information Flow Analysis for Hardware Security Verification. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1-8.

Hardware information flow analysis detects security vulnerabilities resulting from unintended design flaws, timing channels, and hardware Trojans. These information flow models are typically generated in a general way, which includes a significant amount of redundancy that is irrelevant to the specified security properties. In this work, we propose a property specific approach for information flow security. We create information flow models tailored to the properties to be verified by performing a property specific search to identify security critical paths. This helps find suspicious signals that require closer inspection and quickly eliminates portions of the design that are free of security violations. Our property specific trimming technique reduces the complexity of the security model; this accelerates security verification and restricts potential security violations to a smaller region which helps quickly pinpoint hardware security vulnerabilities.

Chu, G., Lisitsa, A..  2018.  Penetration Testing for Internet of Things and Its Automation. 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1479–1484.

The Internet of Things (IoT) is an emerging technology, an extension of the traditional Internet which make everything is connected each other based on Radio Frequency Identification (RFID), Sensor, GPS or Machine to Machine technologies, etc. The security issues surrounding IoT have been of detrimental impact to its development and has consequently attracted research interest. However, there are very few approaches which assess the security of IoT from the perspective of an attacker. Penetration testing is widely used to evaluate traditional internet or systems security to date and it normally spends numerous cost and time. In this paper, we analyze the security problems of IoT and propose a penetration testing approach and its automation based on belief-desire-intention (BDI) model to evaluate the security of the IoT.

2019-05-09
Li, Y., Liu, X., Tian, H., Luo, C..  2018.  Research of Industrial Control System Device Firmware Vulnerability Mining Technology Based on Taint Analysis. 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS). :607-610.

Aiming at the problem that there is little research on firmware vulnerability mining and the traditional method of vulnerability mining based on fuzzing test is inefficient, this paper proposed a new method of mining vulnerabilities in industrial control system firmware. Based on taint analysis technology, this method can construct test cases specifically for the variables that may trigger vulnerabilities, thus reducing the number of invalid test cases and improving the test efficiency. Experiment result shows that this method can reduce about 23 % of test cases and can effectively improve test efficiency.

2019-05-01
Gundabolu, S., Wang, X..  2018.  On-chip Data Security Against Untrustworthy Software and Hardware IPs in Embedded Systems. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :644–649.

State-of-the-art system-on-chip (SoC) field programmable gate arrays (FPGAs) integrate hard powerful ARM processor cores and the reconfigurable logic fabric on a single chip in addition to many commonly needed high performance and high-bandwidth peripherals. The increasing reliance on untrustworthy third-party IP (3PIP) cores, including both hardware and software in FPGA-based embedded systems has made the latter increasingly vulnerable to security attacks. Detection of trojans in 3PIPs is extremely difficult to current static detection methods since there is no golden reference model for 3PIPs. Moreover, many FPGA-based embedded systems do not have the support of security services typically found in operating systems. In this paper, we present our run-time, low-cost, and low-latency hardware and software based solution for protecting data stored in on-chip memory blocks, which has attracted little research attention. The implemented memory protection design consists of a hierarchical top-down structure and controls memory access from software IPs running on the processor and hardware IPs running in the FPGA, based on a set of rules or access rights configurable at run time. Additionally, virtual addressing and encryption of data for each memory help protect confidentiality of data in case of a failure of the memory protection unit, making it hard for the attacker to gain access to the data stored in the memory. The design is implemented and tested on the Intel (Altera) DE1-SoC board featuring a SoC FPGA that integrates a dual-core ARM processor with reconfigurable logic and hundreds of memory blocks. The experimental results and case studies show that the protection model is successful in eliminating malicious IPs from the system without need for reconfiguration of the FPGA. It prevents unauthorized accesses from untrusted IPs, while arbitrating access from trusted IPs generating legal memory requests, without incurring a serious area or latency penalty.

2019-03-22
Azzaz, M. S., Tanougast, C., Maali, A., Benssalah, M..  2018.  Hardware Implementation of Multi-Scroll Chaos Based Architecture for Securing Biometric Templates. 2018 International Conference on Smart Communications in Network Technologies (SaCoNeT). :227-231.

In spite of numerous advantages of biometrics-based personal authentication systems over traditional security systems based on token or knowledge, they are vulnerable to attacks that can decrease their security considerably. In this paper, we propose a new hardware solution to protect biometric templates such as fingerprint. The proposed scheme is based on chaotic N × N grid multi-scroll system and it is implemented on Xilinx FPGA. The hardware implementation is achieved by applying numerical solution methods in our study, we use EM (Euler Method). Simulation and experimental results show that the proposed scheme allows a low cost image encryption for embedded systems while still providing a good trade-off between performance and hardware resources. Indeed, security analysis performed to the our scheme, is strong against known different attacks, such as: brute force, statistical, differential, and entropy. Therefore, the proposed chaos-based multiscroll encryption algorithm is suitable for use in securing embedded biometric systems.

2019-03-18
Gunduz, M. Z., Das, R..  2018.  A comparison of cyber-security oriented testbeds for IoT-based smart grids. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1–6.

Combining conventional power networks and information communication technologies forms smart grid concept. Researches on the evolution of conventional power grid system into smart grid continue thanks to the development of communication and information technologies hopefully. Testing of smart grid systems is usually performed in simulation environments. However, achieving more effective real-world implementations, a smart grid application needs a real-world test environment, called testbed. Smart grid, which is the combination of conventional electricity line with information communication technologies, is vulnerable to cyber-attacks and this is a key challenge improving the smart grid. The vulnerabilities to cyber-attacks in smart grid arise from information communication technologies' nature inherently. Testbeds, which cyber-security researches and studies can be performed, are needed to find effective solutions against cyber-attacks capabilities in smart grid practices. In this paper, an evaluation of existing smart grid testbeds with the capability of cyber security is presented. First, background, domains, research areas and security issues in smart grid are introduced briefly. Then smart grid testbeds and features are explained. Also, existing security-oriented testbeds and cyber-attack testing capabilities of testbeds are evaluated. Finally, we conclude the study and give some recommendations for security-oriented testbed implementations.

Condé, R. C. R., Maziero, C. A., Will, N. C..  2018.  Using Intel SGX to Protect Authentication Credentials in an Untrusted Operating System. 2018 IEEE Symposium on Computers and Communications (ISCC). :00158–00163.
An important principle in computational security is to reduce the attack surface, by maintaining the Trusted Computing Base (TCB) small. Even so, no security technique ensures full protection against any adversary. Thus, sensitive applications should be designed with several layers of protection so that, even if a layer might be violated, sensitive content will not be compromised. In 2015, Intel released the Software Guard Extensions (SGX) technology in its processors. This mechanism allows applications to allocate enclaves, which are private memory regions that can hold code and data. Other applications and even privileged code, like the OS kernel and the BIOS, are not able to access enclaves' contents. This paper presents a novel password file protection scheme, which uses Intel SGX to protect authentication credentials in the PAM authentication framework, commonly used in UNIX systems. We defined and implemented an SGX-enabled version of the pam\_unix.so authentication module, called UniSGX. This module uses an SGX enclave to handle the credentials informed by the user and to check them against the password file. To add an extra security layer, the password file is stored using SGX sealing. A threat model was proposed to assess the security of the proposed solution. The obtained results show that the proposed solution is secure against the threat model considered, and that its performance overhead is acceptable from the user point of view. The scheme presented here is also suitable to other authentication frameworks.
2019-03-15
Crouch, A., Hunter, E., Levin, P. L..  2018.  Enabling Hardware Trojan Detection and Prevention through Emulation. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). :1-5.

Hardware Trojans, implantable at a myriad of points within the supply chain, are difficult to detect and identify. By emulating systems on programmable hardware, the authors have created a tool from which to create and evaluate Trojan attack signatures and therefore enable better Trojan detection (for in-service systems) and prevention (for in-design systems).

Hossain, F. S., Shintani, M., Inoue, M., Orailoglu, A..  2018.  Variation-Aware Hardware Trojan Detection through Power Side-Channel. 2018 IEEE International Test Conference (ITC). :1-10.

A hardware Trojan (HT) denotes the malicious addition or modification of circuit elements. The purpose of this work is to improve the HT detection sensitivity in ICs using power side-channel analysis. This paper presents three detection techniques in power based side-channel analysis by increasing Trojan-to-circuit power consumption and reducing the variation effect in the detection threshold. Incorporating the three proposed methods has demonstrated that a realistic fine-grain circuit partitioning and an improved pattern set to increase HT activation chances can magnify Trojan detectability.

Cui, X., Wu, K., Karri, R..  2018.  Hardware Trojan Detection Using Path Delay Order Encoding with Process Variation Tolerance. 2018 IEEE 23rd European Test Symposium (ETS). :1-2.

The outsourcing for fabrication introduces security threats, namely hardware Trojans (HTs). Many design-for-trust (DFT) techniques have been proposed to address such threats. However, many HT detection techniques are not effective due to the dependence on golden chips, limitation of useful information available and process variations. In this paper, we data-mine on path delay information and propose a variation-tolerant path delay order encoding technique to detect HTs.

Xue, M., Bian, R., Wang, J., Liu, W..  2018.  A Co-Training Based Hardware Trojan Detection Technique by Exploiting Unlabeled ICs and Inaccurate Simulation Models. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1452-1457.

Integrated circuits (ICs) are becoming vulnerable to hardware Trojans. Most of existing works require golden chips to provide references for hardware Trojan detection. However, a golden chip is extremely difficult to obtain. In previous work, we have proposed a classification-based golden chips-free hardware Trojan detection technique. However, the algorithm in the previous work are trained by simulated ICs without considering that there may be a shift which occurs between the simulation and the silicon fabrication. It is necessary to learn from actual silicon fabrication in order to obtain an accurate and effective classification model. We propose a co-training based hardware Trojan detection technique exploiting unlabeled fabricated ICs and inaccurate simulation models, to provide reliable detection capability when facing fabricated ICs, while eliminating the need of fabricated golden chips. First, we train two classification algorithms using simulated ICs. During test-time, the two algorithms can identify different patterns in the unlabeled ICs, and thus be able to label some of these ICs for the further training of the another algorithm. Moreover, we use a statistical examination to choose ICs labeling for the another algorithm in order to help prevent a degradation in performance due to the increased noise in the labeled ICs. We also use a statistical technique for combining the hypotheses from the two classification algorithms to obtain the final decision. The theoretical basis of why the co-training method can work is also described. Experiment results on benchmark circuits show that the proposed technique can detect unknown Trojans with high accuracy (92% 97%) and recall (88% 95%).

Wang, C., Zhao, S., Wang, X., Luo, M., Yang, M..  2018.  A Neural Network Trojan Detection Method Based on Particle Swarm Optimization. 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). :1-3.

Hardware Trojans (HTs) are malicious modifications of the original circuits intended to leak information or cause malfunction. Based on the Side Channel Analysis (SCA) technology, a set of hardware Trojan detection platform is designed for RTL circuits on the basis of HSPICE power consumption simulation. Principal Component Analysis (PCA) algorithm is used to reduce the dimension of power consumption data. An intelligent neural networks (NN) algorithm based on Particle Swarm Optimization (PSO) is introduced to achieve HTs recognition. Experimental results show that the detection accuracy of PSO NN method is much better than traditional BP NN method.

Bian, R., Xue, M., Wang, J..  2018.  Building Trusted Golden Models-Free Hardware Trojan Detection Framework Against Untrustworthy Testing Parties Using a Novel Clustering Ensemble Technique. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1458-1463.

As a result of the globalization of integrated circuits (ICs) design and fabrication process, ICs are becoming vulnerable to hardware Trojans. Most of the existing hardware Trojan detection works suppose that the testing stage is trustworthy. However, testing parties may conspire with malicious attackers to modify the results of hardware Trojan detection. In this paper, we propose a trusted and robust hardware Trojan detection framework against untrustworthy testing parties exploiting a novel clustering ensemble method. The proposed technique can expose the malicious modifications on Trojan detection results introduced by untrustworthy testing parties. Compared with the state-of-the-art detection methods, the proposed technique does not require fabricated golden chips or simulated golden models. The experiment results on ISCAS89 benchmark circuits show that the proposed technique can resist modifications robustly and detect hardware Trojans with decent accuracy (up to 91%).

Cozzi, M., Galliere, J., Maurine, P..  2018.  Exploiting Phase Information in Thermal Scans for Stealthy Trojan Detection. 2018 21st Euromicro Conference on Digital System Design (DSD). :573-576.

Infrared thermography has been recognized for its ability to investigate integrated circuits in a non destructive way. Coupled to lock-in correlation it has proven efficient in detecting thermal hot spots. Most of the state of the Art measurement systems are based on amplitude analysis. In this paper we propose to investigate weak thermal hot spots using the phase of infrared signals. We demonstrate that phase analysis is a formidable alternative to amplitude to detect small heat signatures. Finally, we apply our measurement platform and its detection method to the identification of stealthy hardware Trojans.

Martin, H., Entrena, L., Dupuis, S., Natale, G. Di.  2018.  A Novel Use of Approximate Circuits to Thwart Hardware Trojan Insertion and Provide Obfuscation. 2018 IEEE 24th International Symposium on On-Line Testing And Robust System Design (IOLTS). :41-42.

Hardware Trojans have become in the last decade a major threat in the Integrated Circuit industry. Many techniques have been proposed in the literature aiming at detecting such malicious modifications in fabricated ICs. For the most critical circuits, prevention methods are also of interest. The goal of such methods is to prevent the insertion of a Hardware Trojan thanks to ad-hoc design rules. In this paper, we present a novel prevention technique based on approximation. An approximate logic circuit is a circuit that performs a possibly different but closely related logic function, so that it can be used for error detection or error masking where it overlaps with the original circuit. We will show how this technique can successfully detect the presence of Hardware Trojans, with a solution that has a smaller impact than triplication.

Inoue, T., Hasegawa, K., Kobayashi, Y., Yanagisawa, M., Togawa, N..  2018.  Designing Subspecies of Hardware Trojans and Their Detection Using Neural Network Approach. 2018 IEEE 8th International Conference on Consumer Electronics - Berlin (ICCE-Berlin). :1-4.

Due to the recent technological development, home appliances and electric devices are equipped with high-performance hardware device. Since demand of hardware devices is increased, production base become internationalized to mass-produce hardware devices with low cost and hardware vendors outsource their products to third-party vendors. Accordingly, malicious third-party vendors can easily insert malfunctions (also known as "hardware Trojans'') into their products. In this paper, we design six kinds of hardware Trojans at a gate-level netlist, and apply a neural-network (NN) based hardware-Trojan detection method to them. The designed hardware Trojans are different in trigger circuits. In addition, we insert them to normal circuits, and detect hardware Trojans using a machine-learning-based hardware-Trojan detection method with neural networks. In our experiment, we learned Trojan-infected benchmarks using NN, and performed cross validation to evaluate the learned NN. The experimental results demonstrate that the average TPR (True Positive Rate) becomes 72.9%, the average TNR (True Negative Rate) becomes 90.0%.

Ye, J., Yang, Y., Gong, Y., Hu, Y., Li, X..  2018.  Grey Zone in Pre-Silicon Hardware Trojan Detection. 2018 IEEE International Test Conference in Asia (ITC-Asia). :79-84.

Pre-Silicon hardware Trojan detection has been studied for years. The most popular benchmark circuits are from the Trust-Hub. Their common feature is that the probability of activating hardware Trojans is very low. This leads to a series of machine learning based hardware Trojan detection methods which try to find the nets with low signal probability of 0 or 1. On the other hand, it is considered that, if the probability of activating hardware Trojans is high, these hardware Trojans can be easily found through behaviour simulations or during functional test. This paper explores the "grey zone" between these two opposite scenarios: if the activation probability of a hardware Trojan is not low enough for machine learning to detect it and is not high enough for behaviour simulation or functional test to find it, it can escape from detection. Experiments show the existence of such hardware Trojans, and this paper suggests a new set of hardware Trojan benchmark circuits for future study.

2019-03-11
Puesche, A., Bothe, D., Niemeyer, M., Sachweh, S., Pohlmann, N., Kunold, I..  2018.  Concept of Smart Building Cyber-physical Systems Including Tamper Resistant Endpoints. 2018 International IEEE Conference and Workshop in Óbuda on Electrical and Power Engineering (CANDO-EPE). :000127–000132.

Cyber-physical systems (CPS) and their Internet of Things (IoT) components are repeatedly subject to various attacks targeting weaknesses in their firmware. For that reason emerges an imminent demand for secure update mechanisms that not only include specific systems but cover all parts of the critical infrastructure. In this paper we introduce a theoretical concept for a secure CPS device update and verification mechanism and provide information on handling hardware-based security incorporating trusted platform modules (TPM) on those CPS devices. We will describe secure communication channels by state of the art technology and also integrity measurement mechanisms to ensure the system is in a known state. In addition, a multi-level fail-over concept is presented, ensuring continuous patching to minimize the necessity of restarting those systems.

Hoeller, A., Toegl, R..  2018.  Trusted Platform Modules in Cyber-Physical Systems: On the Interference Between Security and Dependability. 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :136–144.

Cyber physical systems are the key innovation driver for many domains such as automotive, avionics, industrial process control, and factory automation. However, their interconnection potentially provides adversaries easy access to sensitive data, code, and configurations. If attackers gain control, material damage or even harm to people must be expected. To counteract data theft, system manipulation and cyber-attacks, security mechanisms must be embedded in the cyber physical system. Adding hardware security in the form of the standardized Trusted Platform Module (TPM) is a promising approach. At the same time, traditional dependability features such as safety, availability, and reliability have to be maintained. To determine the right balance between security and dependability it is essential to understand their interferences. This paper supports developers in identifying the implications of using TPMs on the dependability of their system.We highlight potential consequences of adding TPMs to cyber-physical systems by considering the resulting safety, reliability, and availability. Furthermore, we discuss the potential of enhancing the dependability of TPM services by applying traditional redundancy techniques.