Visible to the public Biblio

Filters: Keyword is Geometry  [Clear All Filters]
Kumar, Devendra, Mathur, Dhirendra.  2020.  Proximity Coupled Wideband Wearable Antenna for Body Area Networks. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1—5.

This paper presents a proximity coupled wideband wearable antenna operating between 4.71 GHz and 5.81 GHz with 5.2 GHz as centre frequency for biomedical telemetry applications in ISM band (IEEE 802.11 Standard). Two layers of different flexible substrate materials, ethylene-vinyl acetate and felt make the design mechanically stable. Bandwidth improvement is achieved by introducing two slots on elliptical ground plane. Highest gain of 3.72 dB and front to back ratio (FBR) of 6.55 is obtained in the given frequency band. The dimensions of antenna have been optimized to have desired bandwidth of 1100 MHz (\$\textbackslashtextbackslashsimeq\$21%). The specific absorption rate (SAR) value is 1.12 \$W/Kg\$ for 1 g of human body tissue. Both simulated and measured results are presented for the structure.

Elvira, Clément, Herzet, Cédric.  2020.  Short and Squeezed: Accelerating the Computation of Antisparse Representations with Safe Squeezing. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :5615—5619.
Antisparse coding aims at spreading the information uniformly over representation coefficients and can be expressed as the solution of an ℓ∞-norm regularized problem. In this paper, we propose a new methodology, coined "safe squeezing", accelerating the computation of antisparse representations. The idea consists in identifying saturated entries of the solution via simple tests and compacting their contribution to achieve some form of dimensionality reduction. Numerical experiments show that the proposed approach leads to significant computational gain.
Zhou, J., Zhang, X., Liu, Y., Lan, X..  2020.  Facial Expression Recognition Using Spatial-Temporal Semantic Graph Network. 2020 IEEE International Conference on Image Processing (ICIP). :1961—1965.

Motions of facial components convey significant information of facial expressions. Although remarkable advancement has been made, the dynamic of facial topology has not been fully exploited. In this paper, a novel facial expression recognition (FER) algorithm called Spatial Temporal Semantic Graph Network (STSGN) is proposed to automatically learn spatial and temporal patterns through end-to-end feature learning from facial topology structure. The proposed algorithm not only has greater discriminative power to capture the dynamic patterns of facial expression and stronger generalization capability to handle different variations but also higher interpretability. Experimental evaluation on two popular datasets, CK+ and Oulu-CASIA, shows that our algorithm achieves more competitive results than other state-of-the-art methods.

Matern, F., Riess, C., Stamminger, M..  2019.  Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations. 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW). :83—92.
High quality face editing in videos is a growing concern and spreads distrust in video content. However, upon closer examination, many face editing algorithms exhibit artifacts that resemble classical computer vision issues that stem from face tracking and editing. As a consequence, we wonder how difficult it is to expose artificial faces from current generators? To this end, we review current facial editing methods and several characteristic artifacts from their processing pipelines. We also show that relatively simple visual artifacts can be already quite effective in exposing such manipulations, including Deepfakes and Face2Face. Since the methods are based on visual features, they are easily explicable also to non-technical experts. The methods are easy to implement and offer capabilities for rapid adjustment to new manipulation types with little data available. Despite their simplicity, the methods are able to achieve AUC values of up to 0.866.
Gamba, Matteo, Azizpour, Hossein, Carlsson, Stefan, Björkman, Mårten.  2019.  On the Geometry of Rectifier Convolutional Neural Networks. 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). :793—797.

While recent studies have shed light on the expressivity, complexity and compositionality of convolutional networks, the real inductive bias of the family of functions reachable by gradient descent on natural data is still unknown. By exploiting symmetries in the preactivation space of convolutional layers, we present preliminary empirical evidence of regularities in the preimage of trained rectifier networks, in terms of arrangements of polytopes, and relate it to the nonlinear transformations applied by the network to its input.

Andreoletti, Davide, Rottondi, Cristina, Giordano, Silvia, Verticale, Giacomo, Tornatore, Massimo.  2019.  An Open Privacy-Preserving and Scalable Protocol for a Network-Neutrality Compliant Caching. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
The distribution of video contents generated by Content Providers (CPs) significantly contributes to increase the congestion within the networks of Internet Service Providers (ISPs). To alleviate this problem, CPs can serve a portion of their catalogues to the end users directly from servers (i.e., the caches) located inside the ISP network. Users served from caches perceive an increased QoS (e.g., average retrieval latency is reduced) and, for this reason, caching can be considered a form of traffic prioritization. Hence, since the storage of caches is limited, its subdivision among several CPs may lead to discrimination. A static subdivision that assignes to each CP the same portion of storage is a neutral but ineffective appraoch, because it does not consider the different popularities of the CPs' contents. A more effective strategy consists in dividing the cache among the CPs proportionally to the popularity of their contents. However, CPs consider this information sensitive and are reluctant to disclose it. In this work, we propose a protocol based on Shamir Secret Sharing (SSS) scheme that allows the ISP to calculate the portion of cache storage that a CP is entitled to receive while guaranteeing network neutrality and resource efficiency, but without violating its privacy. The protocol is executed by the ISP, the CPs and a Regulator Authority (RA) that guarantees the actual enforcement of a fair subdivision of the cache storage and the preservation of privacy. We perform extensive simulations and prove that our approach leads to higher hit-rates (i.e., percentage of requests served by the cache) with respect to the static one. The advantages are particularly significant when the cache storage is limited.
Simpson, Oluyomi, Sun, Yichuang.  2019.  A Stochastic based Physical Layer Security in Cognitive Radio Networks: Cognitive Relay to Fusion Center. 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC). :1—7.
Cognitive radio networks (CRNs) are found to be, without difficulty wide-open to external malicious threats. Secure communication is an important prerequisite for forthcoming fifth-generation (5G) systems, and CRs are not exempt. A framework for developing the accomplishable benefits of physical layer security (PLS) in an amplify-and-forward cooperative spectrum sensing (AF-CSS) in a cognitive radio network (CRN) using a stochastic geometry is proposed. In the CRN the spectrum sensing data from secondary users (SU) are collected by a fusion center (FC) with the assistance of access points (AP) as cognitive relays, and when malicious eavesdropping SU are listening. In this paper we focus on the secure transmission of active APs relaying their spectrum sensing data to the FC. Closed expressions for the average secrecy rate are presented. Analytical formulations and results substantiate our analysis and demonstrate that multiple antennas at the APs is capable of improving the security of an AF-CSSCRN. The obtained numerical results also show that increasing the number of FCs, leads to an increase in the secrecy rate between the AP and its correlated FC.
Bahman Soltani, Hooman, Abiri, Habibollah.  2018.  Criteria for Determining Maximum Theoretical Oscillating Frequency of Extended Interaction Oscillators for Terahertz Applications. IEEE Transactions on Electron Devices. 65:1564—1571.

Extended interaction oscillators (EIOs) are high-frequency vacuum-electronic sources, capable to generate millimeter-wave to terahertz (THz) radiations. They are considered to be potential sources of high-power submillimeter wavelengths. Different slow-wave structures and beam geometries are used for EIOs. This paper presents a quantitative figure of merit, the critical unloaded oscillating frequency (fcr) for any specific geometry of EIO. This figure is calculated and tested for 2π standing-wave modes (a common mode for EIOs) of two different slowwave structures (SWSs), one double-ridge SWS driven by a sheet electron beam and one ring-loaded waveguide driven by a cylindrical beam. The calculated fcrs are compared with particle-in-cell (PIC) results, showing an acceptable agreement. The derived fcr is calculated three to four orders of magnitude faster than the PIC solver. Generality of the method, its clear physical interpretation and computational rapidity, makes it a convenient approach to evaluate the high-frequency behavior of any specified EIO geometry. This allows to investigate the changes in geometry to attain higher frequencies at THz spectrum.

Toliupa, Serhiy, Tereikovskiy, Ihor, Dychka, Ivan, Tereikovska, Liudmyla, Trush, Alexander.  2019.  The Method of Using Production Rules in Neural Network Recognition of Emotions by Facial Geometry. 2019 3rd International Conference on Advanced Information and Communications Technologies (AICT). :323–327.
The article is devoted to the improvement of neural network means of recognition of emotions on human geometry, which are defined for use in information systems of general purpose. It is shown that modern means of emotional recognition are based on the usual networks of critical disadvantage, because there is a lack of accuracy of recognition under the influence of purchased, characteristic of general-purpose information systems. It is determined that the above remarks relate to the turning of the face and the size of the image. A typical approach to overcoming this disadvantage through training is unacceptable for all protection options that are inappropriate for reasons of duration and compilation of the required training sample. It is proposed to increase the accuracy of recognition by submitting an expert data model to the neural network. An appropriate method for representing expert knowledge is developed. A feature of the method is the use of productive rules and the PNN neural network. Experimental verification of the developed solutions has been carried out. The obtained results allow to increase the efficiency of the termination and disclosure of the set of age networks, the characteristics of which are not presented in the registered statistical data.
Bickel, J. E., Aidala, K. E..  2019.  Phase Diagram of 360° Domain Walls in Magnetic Rings. IEEE Transactions on Magnetics. 55:1–6.

One method to increase bit density in magnetic memory devices is to use multi-state structures, such as a ferromagnetic nanoring with multiple domain walls (DWs), to encode information. However, there is a competition between decreasing the ring size in order to more densely pack bits and increasing it to make multiple DWs stable. This paper examines the effects of ring geometry, specifically inner and outer diameters (ODs), on the formation of 360° DWs. By sequentially increasing the strength of an applied circular magnetic field, we examine how DWs form under the applied field and whether they remain when the field is returned to zero. We examine the relationships between field strength, number of walls initially formed, and the stability of these walls at zero field for different ring geometries. We demonstrate that there is a lower limit of 200 nm to the ring diameter for the formation of any 360° DWs under an applied field, and that a high number of 360° DWs are stable at remanence only for narrow rings with large ODs.

Davila, Y. G., Júnior, F. A. Revoredo, Peña-Garcia, R., Padrón-Hernández, E..  2019.  Peak in Angular Dependence of Coercivity in a Hexagonal Array of Permalloy Spherical Nanocaps. IEEE Magnetics Letters. 10:1–3.

Micromagnetic simulations of coercivity as a function of external magnetic field direction were performed for a hexagonal array of hemispherical Permalloy nanocaps. The analysis was based on hysteresis loops for arrangements of nanocaps of variable thickness (5 nm and 10 nm). The angular dependence of coercivity had a maximum at about 80° with respect to the arrangement plane. An increase in coercivity with nanocap thickness is related to the magnetization reversal mechanism, where the dipole energy of individual caps generates an effective intermediate axis, locking the magnetic moments. The coercivity has maximum values of 109 Oe for 5 nm and 156 Oe for 10 nm thickness. The remanence decreases monotonically with angle. This is associated with the influence of shape anisotropy, where the demagnetizing field in the plane of the array is much smaller than the demagnetizing field perpendicular to the plane.

Cho, S., Chen, G., Chun, H., Coon, J. P., O'Brien, D..  2018.  Impact of multipath reflections on secrecy in VLC systems with randomly located eavesdroppers. 2018 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Considering reflected light in physical layer security (PLS) is very important because a small portion of reflected light enables an eavesdropper (ED) to acquire legitimate information. Moreover, it would be a practical strategy for an ED to be located at an outer area of the room, where the reflection light is strong, in order to escape the vigilance of a legitimate user. Therefore, in this paper, we investigate the impact of multipath reflections on PLS in visible light communication in the presence of randomly located eavesdroppers. We apply spatial point processes to characterize randomly distributed EDs. The generalized error in signal-to-noise ratio that occurs when reflections are ignored is defined as a function of the distance between the receiver and the wall. We use this error for quantifying the domain of interest that needs to be considered from the secrecy viewpoint. Furthermore, we investigate how the reflection affects the secrecy outage probability (SOP). It is shown that the effect of the reflection on the SOP can be removed by adjusting the light emitting diode configuration. Monte Carlo simulations and numerical results are given to verify our analysis.
Farooq, M. J., Zhu, Q..  2017.  Secure and reconfigurable network design for critical information dissemination in the Internet of battlefield things (IoBT). 2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt). :1–8.

The Internet of things (IoT) is revolutionizing the management and control of automated systems leading to a paradigm shift in areas such as smart homes, smart cities, health care, transportation, etc. The IoT technology is also envisioned to play an important role in improving the effectiveness of military operations in battlefields. The interconnection of combat equipment and other battlefield resources for coordinated automated decisions is referred to as the Internet of battlefield things (IoBT). IoBT networks are significantly different from traditional IoT networks due to the battlefield specific challenges such as the absence of communication infrastructure, and the susceptibility of devices to cyber and physical attacks. The combat efficiency and coordinated decision-making in war scenarios depends highly on real-time data collection, which in turn relies on the connectivity of the network and the information dissemination in the presence of adversaries. This work aims to build the theoretical foundations of designing secure and reconfigurable IoBT networks. Leveraging the theories of stochastic geometry and mathematical epidemiology, we develop an integrated framework to study the communication of mission-critical data among different types of network devices and consequently design the network in a cost effective manner.

Farooq, M. J., Zhu, Q..  2018.  On the Secure and Reconfigurable Multi-Layer Network Design for Critical Information Dissemination in the Internet of Battlefield Things (IoBT). IEEE Transactions on Wireless Communications. 17:2618–2632.

The Internet of things (IoT) is revolutionizing the management and control of automated systems leading to a paradigm shift in areas, such as smart homes, smart cities, health care, and transportation. The IoT technology is also envisioned to play an important role in improving the effectiveness of military operations in battlefields. The interconnection of combat equipment and other battlefield resources for coordinated automated decisions is referred to as the Internet of battlefield things (IoBT). IoBT networks are significantly different from traditional IoT networks due to battlefield specific challenges, such as the absence of communication infrastructure, heterogeneity of devices, and susceptibility to cyber-physical attacks. The combat efficiency and coordinated decision-making in war scenarios depends highly on real-time data collection, which in turn relies on the connectivity of the network and information dissemination in the presence of adversaries. This paper aims to build the theoretical foundations of designing secure and reconfigurable IoBT networks. Leveraging the theories of stochastic geometry and mathematical epidemiology, we develop an integrated framework to quantify the information dissemination among heterogeneous network devices. Consequently, a tractable optimization problem is formulated that can assist commanders in cost effectively planning the network and reconfiguring it according to the changing mission requirements.

Wu, D., Zhang, Y., Liu, Y..  2017.  Dummy Location Selection Scheme for K-Anonymity in Location Based Services. 2017 IEEE Trustcom/BigDataSE/ICESS. :441–448.

Location-Based Service (LBS) becomes increasingly important for our daily life. However, the localization information in the air is vulnerable to various attacks, which result in serious privacy concerns. To overcome this problem, we formulate a multi-objective optimization problem with considering both the query probability and the practical dummy location region. A low complexity dummy location selection scheme is proposed. We first find several candidate dummy locations with similar query probabilities. Among these selected candidates, a cloaking area based algorithm is then offered to find K - 1 dummy locations to achieve K-anonymity. The intersected area between two dummy locations is also derived to assist to determine the total cloaking area. Security analysis verifies the effectiveness of our scheme against the passive and active adversaries. Compared with other methods, simulation results show that the proposed dummy location scheme can improve the privacy level and enlarge the cloaking area simultaneously.

Xu, Y., Wang, H. M., Yang, Q., Huang, K. W., Zheng, T. X..  2017.  Cooperative Transmission for Physical Layer Security by Exploring Social Awareness. 2017 IEEE Globecom Workshops (GC Wkshps). :1–6.

Social awareness and social ties are becoming increasingly fashionable with emerging mobile and handheld devices. Social trust degree describing the strength of the social ties has drawn lots of research interests in many fields including secure cooperative communications. Such trust degree reflects the users' willingness for cooperation, which impacts the selection of the cooperative users in the practical networks. In this paper, we propose a cooperative relay and jamming selection scheme to secure communication based on the social trust degree under a stochastic geometry framework. We aim to analyze the involved secrecy outage probability (SOP) of the system's performance. To achieve this target, we propose a double Gamma ratio (DGR) approach through Gamma approximation. Based on this, the SOP is tractably obtained in closed form. The simulation results verify our theoretical findings, and validate that the social trust degree has dramatic influences on the network's secrecy performance.

Herley, C., Oorschot, P. C. v.  2017.  SoK: Science, Security and the Elusive Goal of Security as a Scientific Pursuit. 2017 IEEE Symposium on Security and Privacy (SP). :99–120.

The past ten years has seen increasing calls to make security research more “scientific”. On the surface, most agree that this is desirable, given universal recognition of “science” as a positive force. However, we find that there is little clarity on what “scientific” means in the context of computer security research, or consensus on what a “Science of Security” should look like. We selectively review work in the history and philosophy of science and more recent work under the label “Science of Security”. We explore what has been done under the theme of relating science and security, put this in context with historical science, and offer observations and insights we hope may motivate further exploration and guidance. Among our findings are that practices on which the rest of science has reached consensus appear little used or recognized in security, and a pattern of methodological errors continues unaddressed.

Zhang, S., Peng, J., Huang, K., Xu, X., Zhong, Z..  2017.  Physical layer security in IoT: A spatial-temporal perspective. 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.
Delay and security are both highly concerned in the Internet of Things (IoT). In this paper, we set up a secure analytical framework for IoT networks to characterize the network delay performance and secrecy performance. Firstly, stochastic geometry and queueing theory are adopted to model the location of IoT devices and the temporal arrival of packets. Based on this model, a low-complexity secure on-off scheme is proposed to improve the network performance. Then, the delay performance and secrecy performance are evaluated in terms of packet delay and packet secrecy outage probability. It is demonstrated that the intensity of IoT devices arouse a tradeoff between the delay and security and the secure on-off scheme can improve the network delay performance and secrecy performance. Moreover, secrecy transmission rate is adopted to reflect the delay-security tradeoff. The analytical and simulation results show the effects of intensity of IoT devices and secure on-off scheme on the network delay performance and secrecy performance.
Kheng, Cheng Wai, Ku, Day Chyi, Ng, Hui Fuang, Khattab, Mahmoud, Chong, Siang Yew.  2016.  Curvature Flight Path for Particle Swarm Optimisation. Proceedings of the Genetic and Evolutionary Computation Conference 2016. :29–36.

An optimisation is a process of finding maxima or minima of the objective function. Particle Swarm Optimisation (PSO) is a nature-inspired, meta-heuristic, black box optimisation algorithm used to search for global minimum or maximum in the solution space. The sampling strategy in this algorithm mimics the flying pattern of a swarm, where each sample is generated randomly according to uniform distribution among three different locations, which marks the current particle location, the individual best found location, and the best found location for the entire swam over all generation. The PSO has known disadvantage of premature convergence in problems with high correlated design variables (high epistatis). However, there is limited research conducted in finding the main reason why the algorithm fails to locate better solutions in these problems. In this paper, we propose to change the traditional triangular flight trajectory of PSO to an elliptical flight path. The new flying method is tested and compared with the traditional triangular flight trajectory of PSO on five high epistatis benchmark problems. Our results show that the samples generated from the elliptical flight path are generally better than the traditional triangular flight trajectory of PSO in term of average fitness and the fitness of best found solution.

L. Thiele, M. Kurras, S. Jaeckel, S. Fähse, W. Zirwas.  2015.  "Interference-floor shaping for liquid coverage zones in coordinated 5G networks". 2015 49th Asilomar Conference on Signals, Systems and Computers. :1102-1106.

Joint transmission coordinated multi-point (CoMP) is a combination of constructive and destructive superposition of several to potentially many signal components, with the goal to maximize the desired receive-signal and at the same time to minimize mutual interference. Especially the destructive superposition requires accurate alignment of phases and amplitudes. Therefore, a 5G clean slate approach needs to incorporate the following enablers to overcome the challenging limitation for JT CoMP: accurate channel estimation of all relevant channel components, channel prediction for time-aligned precoder design, proper setup of cooperation areas corresponding to user grouping and to limit feedback overhead especially in FDD as well as treatment of out-of-cluster interference (interference floor shaping).